Publications

Google Scholar DBLP

Tutorials

  • Jian Tang, Fei Wang, Feixiong Cheng. “Artificial Intelligence for Drug Discovery”. KDD’2021.
  • Jian Tang, Fei Wang, Feixiong Cheng. “Artificial Intelligence for Drug Discovery”. AAAI’2021.
  • William L. Hamilton and Jian Tang. “Graph Representation Learning”. Tutorial at the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI’19), Hawaii, USA, 2019.
  • Jian Tang, Cheng Li and Qiaozhu Mei. “Learning representations of networks”. Tutorial at KDD’17.

Preprints

  • Andreea Deac, Pierre-Luc Bacon, Jian Tang. “Graph neural induction of value iteration.”, arXiv:2009.12604.
  • Simeon Spasov, Alessandro Di Stefano, Pietro Liò, Jian Tang. “GRADE: Graph Dynamic Embedding.”, arXiv:2007.08060.
  • Hannah Alsdurf, Yoshua Bengio, Tristan Deleu, Prateek Gupta, Daphne Ippolito, Richard Janda, Max Jarvie, Tyler Kolody, Sekoul Krastev, Tegan Maharaj, Robert Obryk, Dan Pilat, Valerie Pisano, Benjamin Prud’homme, Meng Qu, Nasim Rahaman, Irina Rish, Jean-Franois Rousseau, Abhinav Sharma, Brooke Struck, Jian Tang, Martin Weiss, Yun William Yu. “COVI White Paper.”, arXiv:2005.08502.
  • Jordan Hoffmann, Louis Maestrati, Yoshihide Sawada, Jian Tang, Jean Michel Sellier, Yoshua Bengio. “Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures”, arXiv:1909.00949.

2023

  • Chence Shi, Chuanrui Wang, Jiarui Lu, Bozitao Zhong, Jian Tang. Protein Sequence and Structure Co-Design with Equivariant Translation. ICLR 2023.
  • Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, Jian Tang. Learning on Large-scale Text-attributed Graphs via Variational Inference. ICLR 2023.
  • Yangtian Zhang, Huiyu Cai, Chence Shi, Jian Tang. E3Bind: An End-to-End Equivariant Network for Protein-Ligand Docking. ICLR 2023.
  • Zuobai Zhang, Minghao Xu, Arian Rokkum Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang. Protein Representation Learning by Geometric Structure Pretraining. ICLR 2023.
  • Shengchao Liu, Hongyu Guo, Jian Tang. Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching. ICLR 2023.
  • Yu Li, Meng Qu, Jian Tang, Yi Chang. “Signed Laplacian Graph Neural Networks”. AAAI 2023.

2022

  • Minghao Xu, Zuobai Zhang, Jiarui Lu, Zhaocheng Zhu, Yangtian Zhang, Chang Ma, Runcheng Liu, Jian Tang. PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding. NeurIPS Datasets and Benchmarks 2022.
  • Mikhail Galkin, Zhaocheng Zhu, Hongyu Ren, Jian Tang. Inductive Logical Query Answering in Knowledge Graphs. NeurIPS 2022.
  • Chenqing Hua, Guillaume Rabusseau, Jian Tang. High-Order Pooling for Graph Neural Networks with Tensor Decomposition. NeurIPS 2022.
  • Shaohua Fan, Xiao Wang, Yanhu Mo, Chuan Shi, Jian Tang. Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure. NeurIPS 2022.
  • Kuangqi Zhou, Kaixin Wang, Jian Tang, Jiashi Feng, Bryan Hooi, Peilin Zhao, Tingyang Xu, Xinchao Wang. Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction. Learning on Graphs Conference 2022.
  • Wujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess Smidt, Yusu Wang, Jian Tang, Rafael Gomez-Bombarelli. Generative Coarse-Graining of Molecular Conformations. ICML’22.
  • Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, Jian Tang. Neural-Symbolic Models for Logical Queries on Knowledge Graphs, ICML’22.
  • Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, and Christian S. Jensen. “Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning”, ICDE’22.
  • Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, Hong Chen. “Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering”, ACL’22.
  • Meng Qu, Huiyu Cai, Jian Tang. [Neural Structured Prediction for InductiveNode Classification], ICLR’22.
  • Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, Jian Tang. [GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation], ICLR’22.
  • Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, Jian Tang. Pre-training Molecular Graph Representation with 3D Geometry, ICLR’22.
  • Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cai, Jian Tang. [Structured Multi-Task Learning for Molecular Property Predictions], AISTATS’22.

2021

2020

2019

2018 and before