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Outline

• Node Representation Methods
• LINE, DeepWalk, node2vec

• Graph and High-dimensional Data Visualization
• LargeVis

• Knowledge Graph Embedding
• RotatE (Sun et al., ICLR’19)

• AHigh-performance Node Representation System (Zhu et al.,
WWW’19)



Problem Definition: Node Embedding

• Given a network/graph G=(V, E, W), where V is the set of nodes, E is 
the set of edges between the nodes, and W is the set of weights of the 
edges, the goal of node embedding is to represent each node i with a
vector           ,  which preserves the structure of networks.

Networks Node representations

!ui ∈ Rd



Related Work

• Classical graph embedding algorithms
• MDS, IsoMap, LLE, Laplacian Eigenmap, …
• Hard to scale up

• Graph factorization (Ahmed et al. 2013)
• Not specifically designed for network representation
• Undirected graphs only

• Neural word embeddings (Bengio et al. 2003)
• Neural language model
• word2vec (skipgram), paragraph vectors, etc. 



LINE: Large-scale Information Network
Embedding (Tang et al., Most Cited Paper of 
WWW 2015)
• Arbitrary types of networks
• Directed, undirected, and/or weighted

• Clear objective function
• Preserve the first-order and second-order proximity

• Scalable
• Asynchronous stochastic gradient descent
• Millions of nodes and billions of edges: a coupe of hours on a single machine

Jian Tang, Meng Qu, Mingzhe Wang, Jun Yan, Ming Zhang and Qiaozhu Mei. LINE: Large-scale Information Network Embedding. WWW’15  



First-order Proximity

• The local pairwise proximity between the nodes
• However, many links between the nodes are not observed

• Not sufficient for preserving the entire network structure



Second-order Proximity

• Proximity between the neighborhood structures of the nodes

“The degree of overlap of two people’s friendship networks correlates 
with the strength of ties between them” --Mark Granovetter

“You shall know a word by the company it keeps”  --John Rupert Firth 



Preserving the First-order Proximity 
(LINE 1st)
• Distributions: : (defined on the undirected edge i - j)

• Objective:

p1(vi,vj ) =
exp(!ui

T !uj )
exp(!um

T !un )
(m,n)∈V×V
∑

p̂1(vi,vj ) =
wij

wmn
(m,n)∈E
∑

: Embedding of i

Empirical distribution of first-
order proximity:

Model distribution of
first-order proximity:

!ui

O1 = KL( p̂1, p1) = − wij log p1(vi,vj )
(i, j )∈E
∑



Preserving the Second-order Proximity 
(LINE 2nd)
• Distributions: (defined on the directed edge i -> j)

• Objective:

p̂2 (vj | vi ) =
wij

wik
k∈V
∑

p2 (vj | vi ) =
exp(!u 'i

T !uj )
exp(!u 'k

T !ui )
k∈V
∑

Empirical distribution of
neighborhood structure:

Model distribution of
neighborhood structure:

O2 = KL( p̂2 (⋅ | vi ), p2 (⋅ | vi ))
i
∑ = − wij log p2 (vj | vi )

(i, j )∈E
∑



Optimization Tricks
• Stochastic gradient descent + Negative Sampling

• Randomly sample an edge and multiple negative edges

• The gradient w.r.t the embedding with edge (i, j)

• Problematic when the variances of weights of the edges are large

• The variance of the gradients are large

• Solution: edge sampling

• Sample the edges according to their weights and treat the edges as binary

• Complexity: O(d*K*|E|)

• Linear to the dimensionality d, the number of negative samples K, and the number of 
edges 

∂O2

∂
!ui
= wij

∂ log p̂2 (vj | vi )
∂
!ui



Discussion

• Embed nodes with few neighbors
• Expand the neighbors by adding higher-order neighbors
• Breadth-first search (BFS)
• Adding only second-order neighbors works well in most cases

• Embed new nodes
• Fix the embeddings of existing nodes
• Optimize the objective w.r.t. the embeddings of new nodes



DeepWalk (Perozzi et al. 2014)

• Learning node representations with the technique for learning word 
representations, i.e., Skipgram
• Treat random walks on networks as sentences

Random walk generation
(generate node contexts 
through random search)

Predict the nearby nodes
in the random walks

p(vj | vi ) =
exp(!u 'i

T !uj )
exp(!u 'k

T !ui )
k∈V
∑

Bryan Perozzi, Rami Al-Rfou, Steven Skiena. DeepWalk: Online Learning of Social Representations. KDD’14



Node2Vec (Grover and Leskovec, 2016)

• Find the node context with a hybrid strategy of
• Breadth-first Sampling (BFS): homophily
• Depth-first Sampling (DFS): structural equivalence

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. KDD’16



Expand Node Contexts with Biased 
Random Walk

• Biased random walk with two parameters p and q
• p: controls the probability of revisiting a node in the walk 
• q: controls the probability of exploring “outward” nodes
• Find optimal p and q through cross-validation on labeled data

• Optimized through similar objective as LINE with first-order proximity



Comparison between LINE, DeepWalk, 
and Node2Vec

Algorithm Neighbor Expansion Proximity Optimization Validation Data

LINE BFS 1st or 2nd Negative Sampling No

DeepWalk Random 2nd Hierarchical Softmax No

Node2Vec BFS + DFS 1st Negative Sampling Yes



Applications

• Node classification (Perozzi et al. 2014, Tang et al. 2015a, Grover et al. 
2015 ) 
• Node visualization (Tang et al. 2015a) 
• Link prediction (Grover et al. 2015)
• Recommendation (Zhao et al. 2016)
• Text representation (Tang et al. 2015a, Tang et al. 2015b)
• …



Many Extensions …
• Leverage global structural information (Cao et al. 2015)
• Non-linear methods based on autoencoders (Wang et al. 2016)
• Matrix-factorization based approaches (Qiu et al. 2018)
• Directed network embedding (Ou et al. 2016)
• Signed network embedding (Wang et al. 2017)
• Multi-view networks ( Qu and Tang et al. 2017)
• Networks with node attributes (Yang et al. 2015)
• Heterogeneous networks (Chang et al. 2015)
• Task-specific network embedding (Chen et al. 2017)
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• Node Representation Methods
• LINE, DeepWalk, node2vec

• Graph and High-dimensional Data Visualization
• LargeVis

• Knowledge Graph Embedding
• RotatE

• AHigh-performance Node Representation System



Extremely Low-dimensional Representations: 
2D/3D for Visualizing Networks

….

….
…. ….

….

Networks 2D/3D Layout

….

High-dimensional Data

K-Nearest Neighbor Graph (KNN-G)
Construction

Graph Layout

Heatmaps

Network DiagramsScatter Plots



t-SNE (Maarten and Hinton, 2008, 2014 )

• State-of-the-art algorithm for high-
dimensional data visualization
• Deployed by Tensorflow

• Limitations
• K-NNG construction: complexity 

grows O(NlogN) to the number of data 
points N
• Graph layout: complexity is O(NlogN)
• Very sensitive parameters TensorBoard Visualizations by t-SNE



LargeVis (Tang et al., Best Paper Nomination 
at WWW 2016)
• Efficient approximation of K-NNG construction
• 30 times faster than t-SNE (3 million data points)
• Better time-accuracy tradeoff

• Efficient probabilistic model for graph layout 
• O(NlogN) -> O(N)
• 7 times faster than t-SNE (3 million data points)
• Better visualization layouts
• Stable parameters across different data sets

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing Large-scale and High-dimensional Data. WWW’16



Learning the Layout of KNN Graph

• Preserve the similarities of the nodes in 2D/3D space
• Represent each node with a 2D/3D vector 
• Keep similar data close while dissimilar data far apart

• Probability of observing a binary edge between nodes (i,j):

• Likelihood of observing a weighted edge between nodes (i,j): 

p(eij =1) =
1

1+ || !yi −
!yj ||

2

p(eij = wij ) = p(eij =1)
wij



A Probabilistic Model for Graph Layout

• Objective:
•

• Randomly sample some negative edges
• Optimized through asynchronous stochastic gradient descent
• Time complexity: linear to the number of data points 

O = p(eij = wij )
(i, j )∈E
∏ (1− p(eij = wij )

(i, j )∈E
∏ )γ

γ: an unified weight assigned to negative edge



10M Scientific Papers on 
One Slide
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10M Scientific Papers on One Slide
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Computer Science Mathematics
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Physics Biology

27



Computer Science vs. Mathematics
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Computer Science vs. Physics
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Wikipedia Articles
(color: semantic cluster) 30



LiveJournal Network
(color: community)
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Computer Science 
Authors
(color: community)
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Knowledge Graphs

• Knowledge graphs are heterogeneous graphs
• Multiple types of relations

• A set of facts represented as triplets
• (head entity, relation, tail entity)

• A variety of applications
• Question answering
• Search
• Recommender Systems
• Natural language understanding
• …



Related Work on Knowledge Graph 
Embedding
• Representing entities as embeddings
• Representing relations as embeddings or matrices

Published as a conference paper at ICLR 2019

Model Score Function
SE (Bordes et al., 2011) �kWr,1h�Wr,2tk h, t 2 Rk,Wr,· 2 Rk⇥k

TransE (Bordes et al., 2013) �kh+ r� tk h, r, t 2 Rk

TransX �kgr,1(h) + r� gr,2(t)k h, r, t 2 Rk

DistMult (Yang et al., 2014) hr,h, ti h, r, t 2 Rk

ComplEx (Trouillon et al., 2016) Re(hr,h, ti) h, r, t 2 Ck

HolE (Nickel et al., 2016) hr,h⌦ ti h, r, t 2 Rk

ConvE (Dettmers et al., 2017) h�(vec(�([r,h] ⇤⌦))W ), ti h, r, t 2 Rk

RotatE �kh � r� tk1 h, r, t 2 Ck, |ri| = 1

Table 1: The score functions fr(h, t) of several knowledge graph embedding models, where h·i
denotes the generalized dot product, � denotes the Hadamard product, ⌦ denotes circular correlation,
� denotes activation function and ⇤ denotes 2D convolution. · denotes conjugate for complex
vectors, and 2D reshaping for real vectors in ConvE model. TransX represents a wide range of
TransE’s variants, such as TransH (Wang et al., 2014), TransR (Lin et al., 2015b), and STransE
(Nguyen et al., 2016), where gr,i(·) denotes a matrix multiplication with respect to relation r.

which represents relations as translations, aims to model the inversion and composition patterns; the
DisMult model (Yang et al., 2014), which models the three-way interactions between head entities,
relations, and tail entities, aims to model the symmetry pattern. However, none of existing models is
capable of modeling and inferring all the above patterns. Therefore, we are looking for an approach
that is able to model and infer all the three types of relation patterns.

In this paper, we propose such an approach called RotatE for knowledge graph embedding. Our
motivation is from Euler’s identity ei✓ = cos ✓ + i sin ✓, which indicates that a unitary complex
number can be regarded as a rotation in the complex plane. Specifically, the RotatE model maps
the entities and relations to the complex vector space and defines each relation as a rotation from
the source entity to the target entity. Given a triplet (h, r, t), we expect that t = h � r, where
h, r, t 2 Ck are the embeddings, the modulus |ri| = 1 and � denotes the Hadamard (element-wise)
product. Specifically, for each dimension in the complex space, we expect that:

ti = hiri, where hi, ri, ti 2 C and |ri| = 1. (1)

It turns out that such a simple operation can effectively model all the three relation patterns: sym-
metric/antisymmetric, inversion, and composition. For example, a relation r is symmetric if and
only if each element of its embedding r, i.e. ri, satisfies ri = e0/i⇡ = ±1; two relations r1 and r2

are inverse if and only if their embeddings are conjugates: r2 = r̄1; a relation r3 = ei✓3 is a combi-
nation of other two relations r1 = ei✓1 and r2 = ei✓2 if and only if r3 = r1 �r2 (i.e. ✓3 = ✓1+✓2).
Moreover, the RotatE model is scalable to large knowledge graphs as it remains linear in both time
and memory.

To effectively optimizing the RotatE, we further propose a novel self-adversarial negative sampling
technique, which generates negative samples according to the current entity and relation embed-
dings. The proposed technique is very general and can be applied to many existing knowledge graph
embedding models. We evaluate the RotatE on four large knowledge graph benchmark datasets in-
cluding FB15k (Bordes et al., 2013), WN18 (Bordes et al., 2013), FB15k-237 (Toutanova & Chen,
2015) and WN18RR (Dettmers et al., 2017). Experimental results show that the RotatE model sig-
nificantly outperforms existing state-of-the-art approaches. In addition, RotatE also outperforms
state-of-the-art models on Countries (Bouchard et al., 2015), a benchmark explicitly designed for
composition pattern inference and modeling. To the best of our knowledge, RotatE is the first model
that achieves state-of-the-art performance on all the benchmarks.

2 RELATED WORK

Predicting missing links with knowledge graph embedding (KGE) methods has been extensively
investigated in recent years. The general methodology is to define a score function for the triplets.

1The p-norm of a complex vector v is defined as kvkp = p
pP

|vi|p. We use L1-norm for all distance-
based models in this paper and drop the subscript of k·k1 for brevity.
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Task: Knowledge Graph Completion

• A fundamental task: predicting missing links 
• The Key Idea: model and infer the relation patterns in knowledge 

graphs according to observed knowledge facts.
• The relationship between relations

• Example:

Barack_Obama BornIn United_States

Barack_Obama Nationality American
Parents	of	Parents	are	Grandparents



Relation Patterns

• Symmetric/Antisymmetric Relations
• Symmetric: e.g., Marriage
• Antisymmetric: e.g., Filiation

• Formally:

! ", $ ⇒ !($, ") if ∀ ", $

! ", $ ⇒ ¬!($, ") if ∀ ", $

r is Symmetric:

r is Antisymmetric:



Relation Patterns

• Inverse Relations
• Hypernym and hyponym
• Husband and wife

• Formally:

!" #, % ⇒ !'(%, #) if ∀ #, %!' is inverse to relation !":



Relation Patterns

• Composition Relations
• My mother’s husband is my father

• Formally:

!" #, % ∧ !'(%, )) ⇒ !,(#, )) if ∀ #, %, z!, is a composition of relation !"
and relation !':



Abilities in Inferring the Relation Patterns

• None of existing methods are able to model and infer all the three 
types of relation patterns

Published as a conference paper at ICLR 2019

Model Score Function Symmetry Antisymmetry Inversion Composition
SE �kWr,1h�Wr,2tk 7 7 7 7

TransE �kh+ r� tk 7 3 3 3
TransX �kgr,1(h) + r� gr,2(t)k 3 3 7 7

DistMult hh, r, ti 3 7 7 7
ComplEx Re(hh, r, ti) 3 3 3 7

RotatE �kh � r� tk 3 3 3 3

Table 2: The pattern modeling and inference abilities of several models.

Formally, let E denote the set of entities and R denote the set of relations, then a knowledge graph
is a collection of factual triplets (h, r, t), where h, t 2 E and r 2 R. Since entity embeddings are
usually represented as vectors, the score function usually takes the form fr(h, t), where h and t are
head and tail entity embeddings. The score function fr(h, t) measures the salience of a candidate
triplet (h, r, t). The goal of the optimization is usually to score true triplet (h, r, t) higher than the
corrupted false triplets (h0, r, t) or (h, r, t0). Table 1 summarizes different score functions fr(h, t)
in previous state-of-the-art methods as well as the model proposed in this paper. These models gen-
erally capture only a portion of the relation patterns. For example, TransE represents each relation
as a bijection between source entities and target entities, and thus implicitly models inversion and
composition of relations, but it cannot model symmetric relations; ComplEx extends DistMult by
introducing complex embeddings so as to better model asymmetric relations, but it cannot infer the
composition pattern. The proposed RotatE model leverages the advantages of both.

A relevant and concurrent work to our work is the TorusE (Ebisu & Ichise, 2018) model, which
defines knowledge graph embedding as translations on a compact Lie group. The TorusE model
can be regarded as a special case of RotatE, where the modulus of embeddings are set fixed; our
RotatE is defined on the entire complex space, which has much more representation capacity. Our
experiments show that this is very critical for modeling and inferring the composition patterns.
Moreover, TorusE focuses on the problem of regularization in TransE while this paper focuses on
modeling and inferring multiple types of relation patterns.

There are also a large body of relational approaches for modeling the relational patterns on knowl-
edge graphs (Lao et al., 2011; Neelakantan et al., 2015; Das et al., 2016; Rocktäschel & Riedel,
2017; Yang et al., 2017). However, these approaches mainly focus on explicitly modeling the rela-
tional paths while our proposed RotatE model implicitly learns the relation patterns, which is not
only much more scalable but also provides meaningful embeddings for both entities and relations.

Another related problem is how to effectively draw negative samples for training knowledge graph
embeddings. This problem has been explicitly studied by Cai & Wang (2017), which proposed a
generative adversarial learning framework to draw negative samples. However, such a framework
requires simultaneously training the embedding model and a discrete negative sample generator,
which are difficult to optimize and also computationally expensive. We propose a self-adversarial
sampling scheme which only relies on the current model. It does require any additional optimization
component, which make it much more efficient.

3 ROTATE: RELATIONAL ROTATION IN COMPLEX VECTOR SPACE

In this section, we introduce our proposed RotatE model. We first introduce three important relation
patterns that are widely studied in the literature of link prediction on knowledge graphs. Afterwards,
we introduce our proposed RotatE model, which defines relations as rotations in complex vector
space. We also show that the RotatE model is able to model and infer all three relation patterns.

3.1 MODELING AND INFERRING RELATION PATTERNS

The key of link prediction in knowledge graph is to infer the connection patterns, e.g., relation
patterns, with observed facts. According to the existing literature (Trouillon et al., 2016; Toutanova
& Chen, 2015; Guu et al., 2015; Lin et al., 2015a), three types of relation patterns are very important
and widely spread in knowledge graphs: symmetry, inversion and composition. We give their formal
definition here:

3



RotatE (Sun et al. 2019)

• A new knowledge graph embedding model RotatE
• Each relation as a elementwise rotation from the source entity to the target 

entity in the complex vector space

• RotatE is able to model and infer all the three types of relation patterns
• An efficient and effective negative sampling algorithm for optimizing 

RotatE
• State-of-the-art results on all the benchmarks for link prediction on 

knowledge graphs

Zhiqing Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowledge Graph Embedding by Relational
Rotation in Complex Space.” to appear in ICLR’19. 



Relation as Elementwise Rotation in 
Complex Space
• Representing head and tail entities in complex vector space, i.e., !, # ∈
ℂ&
• Define each relation r as an element-wise rotation from the head entity 
! to the tail entity #, i.e., 

• ° is the element-wise product. More specifically, we have t) = h)r), 
and

• where -.,/ is the phase angle of r in the i-th dimension.

# = !° 0, where |2/|=1 

r) = 3/45,6 ,



Geometric Interpretation

• Define the distance function of RotatE as

!" #, % = ||(° * − ,||



Modeling the Relation Patterns with 
RotatE
• A relation r is symmetric if and only if !" = ±1, i.e., 

• An example on the space of ℂ

'(," = 0 +! ,

!" = −1 or '(," = ,



Modeling the Relation Patterns with 
RotatE
• A relation r is antisymmetric if and only if !° ! ≠ $

• Two relations %& and %' are inverse if and only if  !' = )!&, i.e., 

• A relation *+ = ,-.+ is a composition of two relations  *$ = ,-.$ and 
*/ = ,-./ if only if *+ = *$ ∘ */, i.e., 

1',- = −1&,-

.+ = .$ + ./



Optimization

• Negative sampling loss

• ! is a fixed margin, " is the sigmoid function, and ($%&, (, )%&) is the i-th
negative triplet. 

+ = − log " ! − 12 $, ) −3
%45

6 1
8 log "(12 $%

&, )%& − !)



Self-adversarial Negative Sampling 
• Traditionally, the negative samples are drawn in an uniform way
• Inefficient as training goes on since many samples are obviously false
• Does not provide useful information

• A self-adversarial negative sampling
• Sample negative triplets according to the current embedding model
• Starts from easier samples to more and more difficult samples
• Curriculum Learning

• ! is the temperature of sampling. "#(ℎ&', )&') measures the salience of 
the triplet

Published as a conference paper at ICLR 2019

Dataset #entity #relation #training #validation #test
FB15k 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 3: Number of entities, relations, and observed triples in each split for four benchmarks.

Lemma 2. RotatE can infer the inversion pattern. (See proof in Appendix C)

Lemma 3. RotatE can infer the composition pattern. (See proof in Appendix D)

These results are also summarized into Table 2. We can see that the RotatE model is the only model
that can model and infer all the three types of relation patterns.

Connection to TransE. From Table 2, we can see that TransE is able to infer and model all the
other relation patterns except the symmetry pattern. The reason is that in TransE, any symmetric
relation will be represented by a 0 translation vector. As a result, this will push the entities with
symmetric relations to be close to each other in the embedding space. RotatE solves this problem
and is a able to model and infer the symmetry pattern. An arbitrary vector r that satisfies ri = ±1
can be used for representing a symmetric relation in RotatE, and thus the entities having symmetric
relations can be distinguished. Different symmetric relations can be also represented with different
embedding vectors. Figure 1 provides illustrations of TransE and RotatE with only 1-dimensional
embedding and shows how RotatE models a symmetric relation.

3.3 OPTIMIZATION

Negative sampling has been proved quite effective for both learning knowledge graph embedding
(Trouillon et al., 2016) and word embedding (Mikolov et al., 2013). Here we use a loss function
similar to the negative sampling loss (Mikolov et al., 2013) for effectively optimizing distance-based
models:

L = � log �(� � dr(h, t))�
nX

i=1

1

k
log �(dr(h

0
i, t

0
i)� �), (4)

where � is a fixed margin, � is the sigmoid function, and (h0i, r, t
0
i) is the i-th negative triplet.

We also propose a new approach for drawing negative samples. The negative sampling loss samples
the negative triplets in a uniform way. Such a uniform negative sampling suffers the problem of
inefficiency since many samples are obviously false as training goes on, which does not provide
any meaningful information. Therefore, we propose an approach called self-adversarial negative
sampling, which samples negative triples according to the current embedding model. Specifically,
we sample negative triples from the following distribution:

p(h0
j , r, t

0
j |{(hi, ri, ti)}) =

exp↵fr(h0
j , t

0
j)P

i exp↵fr(h
0
i, t

0
i)

(5)

where ↵ is the temperature of sampling. Moreover, since the sampling procedure may be costly,
we treat the above probability as the weight of the negative sample. Therefore, the final negative
sampling loss with self-adversarial training takes the following form:

L = � log �(� � dr(h, t))�
nX

i=1

p(h0
i, r, t

0
i) log �(dr(h

0
i, t

0
i)� �) (6)

In the experiments, we will compare different approaches for negative sampling.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

We evaluate our proposed model on four widely used knowledge graphs. The statistics of these
knowledge graphs are summarized into Table 3.
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The Final Objective

• Instead of sampling, treating the sampling probabilities as weights.

Published as a conference paper at ICLR 2019
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where � is a fixed margin, � is the sigmoid function, and (h0i, r, t
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i) is the i-th negative triplet.

We also propose a new approach for drawing negative samples. The negative sampling loss samples
the negative triplets in a uniform way. Such a uniform negative sampling suffers the problem of
inefficiency since many samples are obviously false as training goes on, which does not provide
any meaningful information. Therefore, we propose an approach called self-adversarial negative
sampling, which samples negative triples according to the current embedding model. Specifically,
we sample negative triples from the following distribution:

p(h0
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0
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where ↵ is the temperature of sampling. Moreover, since the sampling procedure may be costly,
we treat the above probability as the weight of the negative sample. Therefore, the final negative
sampling loss with self-adversarial training takes the following form:
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In the experiments, we will compare different approaches for negative sampling.
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Experiments: Data Sets
• FB15K: a subset of Freebase. The main relation types are 

symmetry/antisymmetry and inversion patterns.  
• WN18: a subset of WordNet. The main relation types are 

symmetry/antisymmetry and inversion patterns. 
• FB15K-237:  a subset of FB15K, where inversion relations are deleted. The main 

relation types are symmetry/antisymmetry and composition patterns.
• WN18RR: a subset of WN18, where inversion relations are deleted. The main 

relation types are symmetry/antisymmetry and composition patterns.



Results on FB15k and WN18

• RotatE performs the best
• pRotatE performs similarly to RotatE

Published as a conference paper at ICLR 2019

FB15k WN18
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

TransE [�] - .463 .297 .578 .749 - .495 .113 .888 .943
DistMult [�] 42 .798 - - .893 655 .797 - - .946

HolE - .524 .402 .613 .739 - .938 .930 .945 .949
ComplEx - .692 .599 .759 .840 - .941 .936 .945 .947

ConvE 51 .657 .558 .723 .831 374 .943 .935 .946 .956
pRotatE 43 .799 .750 .829 .884 254 .947 .942 .950 .957
RotatE 40 .797 .746 .830 .884 309 .949 .944 .952 .959

Table 4: Results of several models evaluated on the FB15K and WN18 datasets. Results of [�] are
taken from (Nickel et al., 2016) and results of [�] are taken from (Kadlec et al., 2017). Other results
are taken from the corresponding original papers.

• FB15k (Bordes et al., 2013) is a subset of Freebase (Bollacker et al., 2008), a large-scale
knowledge graph containing general knowledge facts. Toutanova & Chen (2015) showed
that almost 81% of the test triplets (x, r, y) can be inferred via a directly linked triplet
(x, r0, y) or (y, r0, x). Therefore, the key of link prediction on FB15k is to model and infer
the symmetry/antisymmetry and inversion patterns.

• WN18 (Bordes et al., 2013) is a subset of WordNet (Miller, 1995), a database featuring
lexical relations between words. This dataset also has many inverse relations. So the main
relation patterns in WN18 are also symmetry/antisymmetry and inversion.

• FB15k-237 (Toutanova & Chen, 2015) is a subset of FB15k, where inverse relations are
deleted. Therefore, the key of link prediction on FB15k-237 boils down to model and infer
the symmetry/antisymmetry and composition patterns.

• WN18RR (Dettmers et al., 2017) is a subset of WN18. The inverse relations are deleted,
and the main relation patterns are symmetry/antisymmetry and composition.

Hyperparameter Settings. We use Adam (Kingma & Ba, 2014) as the optimizer and fine-tune the
hyperparameters on the validation dataset. The ranges of the hyperparameters for the grid search are
set as follows: embedding dimension4 k 2 {125, 250, 500, 1000}, batch size b 2 {512, 1024, 2048},
self-adversarial sampling temperature ↵ 2 {0.5, 1.0}, and fixed margin � 2 {3, 6, 9, 12, 18, 24, 30}.
Both the real and imaginary parts of the entity embeddings are uniformly initialized, and the phases
of the relation embeddings are uniformly initialized between 0 and 2⇡. No regularization is used
since we find that the fixed margin � could prevent our model from over-fitting.

Evaluation Settings. We evaluate the performance of link prediction in the filtered setting: we
rank test triples against all other candidate triples not appearing in the training, validation, or test
set, where candidates are generated by corrupting subjects or objects: (h0, r, t) or (h, r, t0). Mean
Rank (MR), Mean Reciprocal Rank (MRR) and Hits at N (H@N) are standard evaluation measures
for these datasets and are evaluated in our experiments.

Baseline. Apart from RotatE, we propose a variant of RotatE as baseline, where the modulus of
the entity embeddings are also constrained: |hi| = |ti| = C, and the distance function is thus
2C

��sin ✓h+✓r�✓t
2

�� (See Equation 17 at Appendix F for a detailed derivation). In this way, we can
investigate how RotatE works without modulus information and with only phase information. We
refer to the baseline as pRotatE. It is obvious to see that pRotatE can also model and infer all the
three relation patterns.

4.2 MAIN RESULTS

We compare RotatE to several state-of-the-art models, including TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), HolE (Nickel et al., 2016), and ConvE

4Following Trouillon et al. (2016), we treat complex number as the same as real number with regard to the
embedding dimension. If the same number of dimension is used for both the real and imaginary parts of the
complex number as the real number, the number of parameters for the complex embedding would be twice the
number of parameters for the embeddings in the real space.
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Results on FB15k-237 and WN18RR

• RotatE performs the best
• RotatE performs significantly better than pRotatE
• A lot of composition patterns on the two data sets
• Modulus information are important for modeling the composition patterns
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FB15k-237 WN18RR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

TransE [�] 357 .294 - - .465 3384 .226 - - .501
DistMult 254 .241 .155 .263 .419 5110 .43 .39 .44 .49
ComplEx 339 .247 .158 .275 .428 5261 .44 .41 .46 .51

ConvE 244 .325 .237 .356 .501 4187 .43 .40 .44 .52
pRotatE 178 .328 .230 .365 .524 2923 .462 .417 .479 .552
RotatE 177 .338 .241 .375 .533 3340 .476 .428 .492 .571

Table 5: Results of several models evaluated on the FB15k-237 and WN18RR datasets. Results of
[�] are taken from (Nguyen et al., 2017). Other results are taken from (Dettmers et al., 2017).

Countries (AUC-PR)
DistMult ComplEx ConvE RotatE

S1 1.00± 0.00 0.97± 0.02 1.00± 0.00 1.00± 0.00
S2 0.72± 0.12 0.57± 0.10 0.99± 0.01 1.00± 0.00
S3 0.52± 0.07 0.43± 0.07 0.86± 0.05 0.95± 0.00

Table 6: Results on the Countries datasets. Other results are taken from (Dettmers et al., 2017).

(Dettmers et al., 2017), as well as our baseline model pRotatE, to empirically show the importance
of modeling and inferring the relation patterns for the task of predicting missing links.

Table 4 summarizes our results on FB15k and WN18. We can see that RotatE outperforms all the
state-of-the-art models. The performance of pRotatE and RotatE are similar on these two datasets.
Table 5 summarizes our results on FB15k-237 and WN18RR, where the improvement is much
more significant. The difference between RotatE and pRotatE is much larger on FB15k-237 and
WN18RR, where there are a lot of composition patterns. This indicates that modulus is very impor-
tant for modeling and inferring the composition pattern.

Moreover, the performance of these models on different datasets is consistent with our analysis on
the three relation patterns (Table 2):

• On FB15K, the main relation patterns are symmetry/antisymmetry and inversion. We
can see that ComplEx performs well while TransE does not perform well since Com-
plEx can infer both symmetry/antisymmetry and inversion patterns while TransE can-
not infer symmetry pattern. Surprisingly, DistMult achieves good performance on this
dataset although it cannot model the antisymmetry and inversion patterns. The reason
is that for most of the relations in FB15K, the types of head entities and tail entities
are different. Although DistMult gives the same score to a true triplet (h, r, t) and
its opposition triplet (t, r, h), (t, r, h) is usually impossible to be valid since the en-
tity type of t does not match the head entity type of h. For example, DistMult assigns
the same score to (Obama, nationality, USA) and (USA, nationality, Obama). But
(USA, nationality, Obama) can be simply predicted as false since USA cannot be the head
entity of the relation nationality.

• On WN18, the main relation patterns are also symmetry/antisymmetry and inversion. As
expected, ComplEx still performs very well on this dataset. However, different from the
results on FB15K, the performance of DistMult significantly decreases on WN18. The
reason is that DistMult cannot model antisymmetry and inversion patterns, and almost all
the entities in WN18 are words and belong to the same entity type, which do not have the
same problem as FB15K.

• On FB15k-237, the main relation pattern is composition. We can see that TransE performs
really well while ComplEx does not perform well. The reason is that, as discussed before,
TransE is able to infer the composition pattern while ComplEx cannot infer the composition
pattern.

• On WN18RR, one of the main relation patterns is the symmetry pattern since almost each
word has a symmetric relation in WN18RR, e.g., also see and similar to. TransE does
not well on this dataset since it is not able to model the symmetric relations.
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Results on Countries (Bouchard et al. 
2015)
• A carefully designed dataset to explicitly test the capabilities for 

modeling the composition patterns
• Three subtasks S1, S2, S3
• From easy to difficult
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not infer symmetry pattern. Surprisingly, DistMult achieves good performance on this
dataset although it cannot model the antisymmetry and inversion patterns. The reason
is that for most of the relations in FB15K, the types of head entities and tail entities
are different. Although DistMult gives the same score to a true triplet (h, r, t) and
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the same score to (Obama, nationality, USA) and (USA, nationality, Obama). But
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Summary

• Modeling relation patterns is critical for knowledge base completion
• Symmetric/Antisymmetric, Inverse, and composition

• RotatE: define each relation as a elementwise rotation from the head 
entity to the tail entity in the complex vector space
• Capable of modeling and inferring all the three types of relation patterns

• A self-negative sampling techniques for training knowledge graph
embeddings
• State-of-the-art results on all existing benchmark data sets



Software

https://github.com/tangjianpku/LINE

https://github.com/lferry007/LargeVis

LINE:
(C++)

LargeVis :
(C++&Python)

(593 stars, released since 2015.3)

(459 stars, released since 2016.7)

https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding

RotatE :
(Pytorch)

(just released!!)

https://github.com/tangjianpku/LINE
https://github.com/lferry007/LargeVis
https://github.com/lferry007/LargeVis
https://github.com/lferry007/LargeVis


Outline

• Node Representation Methods
• LINE, DeepWalk, node2vec

• Graph and High-dimensional Data Visualization
• LargeVis

• Knowledge Graph Embedding
• RotatE

• AHigh-performance Node Representation System



A High-Performance CPU-GPU Hybrid System
for Node Embedding (Zhu et al. 2019)
• A specific system designed for node embeddings through algorithm
and system co-design
• CPUs: online random walk generation
• GPUs: training node embeddings
• Efficient and effective collaboration strategies between CPUs and GPUs

• 50 times faster than existing systems
• Take only one minute for a network with one million node

Zhaocheng Zhu, Shizhen Xu, Meng Qu, and Jian Tang. “A High-Performance CPU-GPU Hybrid 
System for Node Embedding ”. To appear in WWW’19.



Summary

• Node Representation Methods
• LINE, DeepWalk, node2vec

• Graph and High-dimensional Data Visualization
• LargeVis

• Knowledge Graph Embedding
• RotatE

• AHigh-performance Node Representation System
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Contact: jian.tang@hec.ca


