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Probability	Theory	

Two	boxes	with	Apples	and	Oranges	



Probability	Theory	

•  (1)	Suppose	we	randomly	pick	one	of	the	boxes	
•  (2)	Randomly	select	a	fruit	from	the	box	
•  (3)	Observe	the	type	of	fruit,	and	then	put	it	back	to	where	
it	came	from	

•  Suppose	we	pick	the	red	box	40%	of	the	Kme,	and	the	blue	
box	60	%	of	the	Kme	

•  We	are	equally	likely	to	select	any	fruit	in	the	boxes	



Probability	Theory	

•  Two	random	variables	
•  The	idenKty	of	the	selected	box	B	(B	can	be	red	or	blue)	
•  The	idenKty	of	the	fruit	F	(F	can	be	apple	or	orange)	

•  Define	the	probability	
•  P(B	=red)	=	4/10,	P(B=	blue)	=	6/10	

•  QuesKons:	
•  What	is	the	overall	probability	that	the	selecKon	procedure	will	
pick	an	apple,	i.e.,	P(F=apple)=?	

•  Given	that	we	have	chosen	an	orange,	what	is	the	probability	that	
the	box	was	the	blue	one,	i.e.	.P(B=blue|F=orange)?	



Two	Random	Variables	

	

•  Marginal	Probability	

•  Joint	Probability	

•  X:	takes	the	values,	x1,	x2,	…,	xm	(m	=5)		
•  Y:	takes	the	values,	y1,	y2,	…,	yn	(n	=3)	
•  𝑛↓𝑖𝑗 :	the	number	of	instances	x=xi	and	y=yj	
•  N:	total	number	of	instances	

•  CondiKonal	Probability	



Probability	Theory	

•  Sum	Rule	

•  Product	Rule	
	



The	Rules	of	Probability	

•  Sum	Rule	

•  Product	Rule	



Bayes’	Theorem	

posterior	∝	likelihood	×	prior	



The	Fruit	Example	
•  The	probabiliKes	of	selecKng	either	the	red	or	the	blue	
box:	
•  P(B	=	red)	=	4/10	
•  P(B	=	blue)	=	6/10	

•  Further	define	the	condiKonal	probability	
•  P	(F	=	apple|	B	=	red)	=	¼	
•  P	(F	=	orange|	B	=	red)	=	¾		
•  P	(F	=	apple|	B	=	blue)	=	¾		
•  P	(F	=	orange|	B	=	blue)	=	¼	

•  Answers	to	the	quesKons	
P(	F=	apple)	=P(F=apple|B=red)P(B=red)	+	P(F=apple|B=blue)P(B=blue)				
=1/4	x4/10	+	3/4x6/10	=11/20	

P(B	=	red	|F=orange)	=	P(F=orange|	B=red)	P(B=red)/
P(F=orange)=	3/4	x	4/10	x	20/9	=	2/3	



ExpectaKons	

CondiKonal	ExpectaKon	(discrete)	

Approximate	ExpectaKon	
(discrete	and	conKnuous)	

•  ExpectaKons	E[f]:	the	average	value	of	some	funcKon		
f(x)	under	a	probability	distribuKon	p(x)		



Variances	and	Covariances	
•  Variances	var[f]:	a	measure	of	how	much	variability	
there	is	in	f(x)	around	its	mean	value	E[f(x)]	

•  Covariance	of	two	random	variables	x	and	y,	cov[x,y]:	
the	extent	to	which	x	and	y	vary	together		



Binomial	DistribuKon	
• A	Binary	variable	𝑥∈{0, 1}, e.g., Flipping	a	coin.	X	=	1	represenKng	heads	and	
X	=	0	represenKng	tails.	Define	the	probability	of	obtaining	heads	as:	

• The	distribuKon	of	the	number	m	of	observaKons		of	x=1	(e.g.	the	number	
of	heads). 
• The	probability	of	observing	m	heads	given	N	coin	flips	and	a		
parameter	µ is	given	by:	

• The	mean	and	variance	can	be	easily	derived	as:	

𝑃( 𝑋=1 )= 𝑢 	



Example	
• Histogram	plot	of	the	Binomial	distribuKon	as	a	funcKon	of	m	for	N=10		
and	µ =	0.25.	



MulKnomial	Variables	

• Consider	a	random	variable	that	can	take	on	one	of	K	possible	mutually		
exclusive	states	(e.g.	roll	of	a	dice).	

• We	will	use	so-called	1-of-K	encoding	scheme.	

• If	a	random	variable	can	take	on	K=6	states,	and	a	parKcular		
observaKon	of	the	variable	corresponds	to	the	state	x3=1,	then	x	will	be		
resented	as:	

1-of-K coding	scheme:	
 

• If	we	denote	the	probability	of	xk=1	by	the	parameter	µk,	then	the		
distribuKon	over	x	is	defined	as:	



MulKnomial	Variables	
• MulKnomial	distribuKon	can	be	viewed	as	a	generalizaKon	of	Bernoulli		
distribuKon	to	more	than	two	outcomes.	

•  It	is	easy	to	see	that	the	distribuKon	is	normalized:	

and	



Maximum	Likelihood	EsKmaKon	
• Suppose	we	observed	a	dataset	

• We	can	construct	the	likelihood	funcKon,	which	is	a	funcKon	of	µ.	

• Note	that	the	likelihood	funcKon	depends	on	the	N	data	points	only		
though	the	following	K	quanKKes:	

which	represents	the	number	of	observaKons	of	xk=1.	
 
• These	are	called	the	sufficient	staKsKcs	for	this	distribuKon.	



Maximum	Likelihood	EsKmaKon	

which	is	the	fracKon	of	observaKons	for	which	xk=1.	

• To	find	a	maximum	likelihood	soluKon	for	µ,	we	need	to	maximize	the		
log-likelihood	taking	into	account	the	constraint	that	

• Forming	the	Lagrangian:	



Gaussian	Univariate	DistribuKon	
•  In	the	case	of	a	single	variable	x,	the	Gaussian	distribuKon	takes	form:	

which	is	governed	by	two	parameters:	

-  µ (mean)	
-  𝜎↑2 (variance)	

 
•  The	Gaussian	distribuKon	saKsfies:	



MulKvariate	Gaussian	DistribuKon	
• For	a	D-dimensional	vector	x,	the	Gaussian	distribuKon	takes	form:	

which	is	governed	by	two	parameters:	
 

-  µ is	a	D-dimensional	mean	vector.	
-  Σ is	a	D	by	D	covariance	matrix.	

 
and	|	Σ |	denotes	the	determinant	of	Σ. 	

 
 
•  Note	that	the	covariance	matrix	is	a	symmetric	posiKve	definite		

matrix.	



Maximum	Likelihood	EsKmaKon	
• Suppose	we	observed	i.i.d	data	

• We	can	construct	the	log-likelihood	funcKon,	which	is	a	funcKon	of	
µ and	§ : 	

• Note	that	the	likelihood	funcKon	depends	on	the	N	data	points	only		
though	the	following	sums:	

Sufficient	Sta-s-cs	



Maximum	Likelihood	EsKmaKon	

• To	find	a	maximum	likelihood	esKmate	of	the	mean,	we	set	the		
derivaKve	of	the	log-likelihood	funcKon	to	zero:	

and	solve	to	obtain:	

• Similarly,	we	can	find	the	ML	esKmate	of	Σ : 	



Maximum	Likelihood	EsKmaKon	

• EvaluaKng	the	expectaKon	of	the	ML	esKmates	under	the	true	
distribuKon,	we	obtain:	 Unbiased	esKmate	

Biased	esKmate	

• Note	that	the	maximum	likelihood	esKmate	of	Σ  is	biased.	

• We	can	correct	the	bias	by	defining	a	different	esKmator:	



Mixture	of	Gaussians	

Single	Gaussian	 Mixture	of	two		
Gaussians	

• When	modeling	real-world	data,	Gaussian	assumpKon	may	not	be		
appropriate.	

• Consider	the	following	example:	Old	Faithful	Dataset	



Mixture	of	Gaussians	
• We	can	combine	simple	models	into	a	complex	model	by	defining	a		
superposiKon	of	K	Gaussian	densiKes	of	the	form:	

Component	

Mixing	coefficient	

K=3 
 
• Note	that	each	Gaussian	component	has	its	own	mean	µk and		
covariance		k . 	The	parameters	 𝜋↓𝑘  are	called	mixing	
coefficients.	

• Mote	generally,	mixture	models	can	comprise	linear	combinaKons	of		
other	distribuKons.	



Mixture	of	Gaussians	
•  IllustraKon	of	a	mixture	of	3	Gaussians	in	a	2-dimensional	space:	

(a) Contours	of	constant	density	of	each	of	the	mixture	components,		
along	with	the	mixing	coefficients	

(b) Contours	of	marginal	probability	density	

(c) A	surface	plot	of	the	distribuKon	p(x).	



Gradient	Descent	
•  Gradient	descent	is	a	way	to	minimize	an	objecKve	
funcKon	𝐽(𝜃)	
•  𝐽(𝜃):	objecKve	funcKon	
•  𝜃∈ 𝑅↑𝑑 :	model’s	parameters	
•  𝜂:	learning	rate,	which	determines	the	size	of	the	steps	we	
take	to	reach	a	(local)	minimum.	

Slides	from	St_Hakky	

Gradient Descent

• Gradient descent is a way to minimize an objective 
function 𝐽(𝜃)

• 𝐽(𝜃)： Objective function
• 𝜃 ∈ 𝑅ௗ：Model’s parameters
• 𝜂：Learning rate. This determines the size of the steps 

we take to reach a (local) minimum.

𝐽(𝜃)

𝜃

𝜃 = 𝜃 − 𝜂 ∗ 𝛻ఏ𝐽(𝜃)

Update equation
𝛻ఏ𝐽(𝜃)

𝑙𝑜𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝜃∗
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