
Regularization and Optimization
Jian Tang

tangjianpku@gmail.com

1



What is regularization

• The goal of machine learning algorithm is to perform well on the 
training data and generalize well to new data
• Regularization are the techniques to improve the generalization 

ability
• i.e., avoid overfitting 



Outline

• Regularization
• Parameter Norm Penalties
• Data set Augmentation
• Noise Robustness
• Semi-supervised Learning
• Multi-task Learning
• Early Stopping
• Dropout



Parameter Norm Penalties

• Adding a parameter norm penalty Ω(#) to the objective function J. 
The regularized objective function is denoted as:

• % ∈ [0,∞) is a hyperparameter that controls the weights of the 
regularization term 
• For regularization neural networks
• Only the weights of the linear transformation at each layer are regularized
• The biases are not regularized



!" Parameter Regularization

• Ω $ = &
" ' ", also know as weight decay or ridge regression

• The objective function:

• Update w with SGD:

• Push w towards zero



!" Parameter Regularization

• Ω $ = & " = ∑( )(,
• The objective function:

• Compare to L2 regularization, L1 regularization results in a solution 
that is more sparse
• Some parameters have an optimal value of zero



L1 RegularizationL1 Regularization 
•  L1 regularization: 

-  Only applies to weights, not biases (weigh decay) 

-  Can be interpreted as having a Laplace prior over the weights, while 
performing MAP estimation. 

-  Unlike L2, L1 will push some weights to be exactly 0.  

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1 0

4

•  Gradient:  

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1 0

4

• g0(a) = g(a)(1� g(a))

• g0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W (k)

i,j

⌘2
=

P
k ||W(k)||2F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j |W

(k)
i,j |

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

4



Outline

• Regularization
• Parameter Norm Penalties
• Dataset Augmentation
• Noise Robustness
• Semi-supervised Learning
• Multi-task Learning
• Early Stopping
• Dropout



Data Augmentation 

• Best way to improve the performance of machine learning
• Train it with more data

• Create fake data and add it to the training data
• Translation 
• Rotation
• Random crops
• Inject noise
• …



Outline

• Regularization
• Parameter Norm Penalties
• Dataset Augmentation
• Noise Robustness
• Semi-supervised Learning
• Multi-task Learning
• Early Stopping
• Dropout



Noise Robustness

• Adding noise to the weights
• Push the model into regions where the model is relatively insensitive to small 

variations in the weights
• Find points that are not merely minima, but minima surrounded by flat 

regions. 
• Adding noise at the output targets
• Most data sets have  some amount of mistakes in the output labels: y
• Explicitly model the noise on the labels
• For example, the training label y is correct with probability 1 − #, and any of 

the other labels with probability #



Outline

• Regularization
• Parameter Norm Penalties
• Dataset Augmentation
• Noise Robustness
• Semi-supervised Learning
• Multi-task Learning
• Early Stopping
• Dropout



Semi-supervised Learning

• Semi-supervised learning: both unlabeled examples from p(x) and 
labeled examples p(x,y) are used to estimate p(y|x)
• Share parameters between the unsupervised objective p(x) and 

supervised objective p(y|x)
• E.g., for both objectives, the goal is to learn a representation h = f(x), which 

can be shared across the two objectives



Outline

• Regularization
• Parameter Norm Penalties
• Dataset Augmentation
• Noise Robustness
• Semi-supervised Learning
• Multi-task Learning
• Early Stopping
• Dropout



Multi-task Learning

• Jointly learning multi-tasks by sharing the same inputs and some 
intermediate representations, which capture  a common pool of 
factors



Outline

• Regularization
• Parameter Norm Penalties
• Dataset Augmentation
• Noise Robustness
• Semi-supervised Learning
• Multi-task Learning
• Early Stopping
• Dropout



Early StoppingEarly Stopping 
•  To select the number of epochs, stop training when validation set 
error increases (with some look ahead). 



Outline

• Regularization
• Parameter Norm Penalties
• Dataset Augmentation
• Noise Robustness
• Semi-supervised Learning
• Multi-task Learning
• Early Stopping
• Dropout



Dropout

• Overcome overfitting by a ensemble of multiple different models
• Trained with different architectures
• Trained on different data sets

• Too expensive on deep neural networks
• Dropout:
• Training multiple networks together by parameter sharing



Dropout Dropout 

•  Key idea: Cripple neural network by removing hidden units 
stochastically 

Ø  each hidden unit is set to 0 with 
probability 0.5 

Ø  hidden units cannot co-adapt to 
other units 

Ø  hidden units must be more 
generally useful 

•  Could use a different dropout 
probability, but 0.5 usually works well 





Dropout Dropout 
•  Use random binary masks m(k)  

Ø  layer pre-activation for k>0 

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)(x) (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

Ø  hidden layer activation (k=1 to L): 

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

Ø  Output activation (k=L+1) 

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2



Dropout at Test TimeDropout at Test Time  
•  At test time, we replace the masks by their expectation 

Ø  This is simply the constant vector 0.5 if dropout probability is 0.5 

Ø  For single hidden layer: equivalent to taking the geometric average 

of all neural networks, with all possible binary masks 

•  Can be combined with unsupervised pre-training 

•  Beats regular backpropagation on many datasets 

•  Ensemble: Can be viewed as a geometric average of exponential 
number of networks.  



Outline

• Optimization
• Parameter Initialization Strategies
• Momentum
• Adaptive Learning Rates (AdaGrad, RMSProp, Adam)
• Batch Normalization



Parameter Initialization (Glorot and Bengio, 
2010)
• For a fully connected network with m inputs and n outputs, the 

weights are sampled according to:

• Which aims to tradeoff between the goal of initializing all layers to 
have the same activation variance and the goal of initializing all layers 
to have the same gradient variance



Tricks of the TradeTricks of the Trade: 
•  Normalizing your (real-valued) data: 

•  Decreasing the learning rate: As we get closer to the optimum, 
take smaller update steps: 

i.  start with large learning rate (e.g. 0.1) 

ii.  maintain until validation error stops improving 

iii.  divide learning rate by 2 and go back to (ii) 

Ø  for each dimension xi subtract its training set mean 

Ø  divide each dimension xi by its training set standard deviation 

Ø  this can speed up training 



Mini-batch, MomentumMini-batch, Momentum 
•  Make updates based on a mini-batch of examples (instead of a 
single example): 

Ø  the gradient is the average regularized loss for that mini-batch 

Ø  can give a more accurate estimate of the gradient 

Ø  can leverage matrix/matrix operations, which are more efficient 

•  Momentum: Can use an exponential average of previous 
gradients: 

• g
0(a) = g(a)(1� g(a))

• g
0(a) = 1� g(a)2

• ⌦(✓) =
P

k

P
i

P
j

⇣
W

(k)
i,j

⌘2
=

P
k
||W(k)||2

F

• rW(k)⌦(✓) = 2W(k)

• ⌦(✓) =
P

k

P
i

P
j
|W (k)

i,j
|

• rW(k)⌦(✓) = sign(W(k))

• sign(W(k))i,j = 1
W(k)

i,j >0
� 1

W(k)
i,j <0

• W(k)
i,j

U [�b, b] b =
p
6p

Hk+Hk�1
Hk h(k)(x)

• a(3)(x) = b(3) +W(3)h(2)

• a(2)(x) = b(2) +W(2)h(1)

• a(1)(x) = b(1) +W(1)x

• h(3)(x) = o(a(3)(x))

• h(2)(x) = g(a(2)(x))

• h(1)(x) = g(a(1)(x))

• b(3) b(2) b(1)

• W(3) W(2) W(1) x f(x)

• @f(x)
@x

⇡ f(x+✏)�f(x�✏)
2✏

• f(x) x ✏

• f(x+ ✏) f(x� ✏)

•
P1

t=1 ↵t = 1

•
P1

t=1 ↵
2
t
< 1 ↵t

• ↵t =
↵

1+�t

• ↵t =
↵

t�
0.5 < �  1 �

• r(t)
✓ = r✓l(f(x(t)), y(t)) + �r(t�1)

✓

4

Ø  can get pass plateaus more quickly, by ‘‘gaining momentum’’ 



Why Momentum really works?



Adapting Learning RatesAdapting Learning Rates 
•  Updates with adaptive learning rates (“one learning rate per 
parameter”) 

Ø  Adagrad: learning rates are scaled by the square root of the 
cumulative sum of squared gradients 

�(t) = �(t�1) +
⇣
r✓l(f(x

(t)), y(t))
⌘2

r(t)
✓ =

r✓l(f(x(t)), y(t))p
�(t) + ✏

Ø  RMSProp: instead of cumulative sum, use exponential moving 
average 

�(t) = ��(t�1) + (1� �)
⇣
r✓l(f(x

(t)), y(t))
⌘2

r(t)
✓ =

r✓l(f(x(t)), y(t))p
�(t) + ✏Ø  Adam: essentially combines 

RMSProp with momentum 



Batch Normalization
• Internal covariate shift

Internal covariate shift

• Covariate shift: Changes of input distribution to a learning system

` = F (x, ✓)

• Internal covariate shift: Extension to the deep network

` = F2(F1(u, ✓1), ✓2)

= F2(x, ✓2)

2

Batch Normalization 
•  Normalizing the inputs will speed up training (Lecun et al. 1998) 

Ø  could normalization be useful at the level of the hidden layers? 

•  Batch normalization is an attempt to do that (Ioffe and Szegedy, 2014) 

Ø  each unit’s pre-activation is normalized (mean subtraction, stddev 

division) 

Ø  during training, mean and stddev is computed for each minibatch 

Ø  backpropagation takes into account the normalization 

Ø  at test time, the global mean / stddev is used 



Batch NormalizationBatch Normalization 
•  Normalizing the inputs will speed up training (Lecun et al. 1998) 

Ø  could normalization be useful at the level of the hidden layers? 

•  Batch normalization is an attempt to do that (Ioffe and Szegedy, 2014) 

Ø  each unit’s pre-activation is normalized (mean subtraction, stddev 

division) 

Ø  during training, mean and stddev is computed for each minibatch 

Ø  backpropagation takes into account the normalization 

Ø  at test time, the global mean / stddev is used 



Batch NormalizationBatch Normalization 

Learned linear transformation to adapt to non-linear 
activation function (! and β are trained)  and β are trained) 



Batch Normalization
•  Why normalize the pre-activation? 

Ø  can help keep the pre-activation in a non-saturating regime 
(though the linear transform                             could cancel this 
effect) 

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

•  Why use minibatches? 

Ø  since hidden units depend on parameters, can’t compute mean/
stddev once and for all 

Ø  adds stochasticity to training, which might regularize 

Batch Normalization 



Batch Normalization
•  How to take into account the normalization in backdrop? 

Ø  derivative w.r.t. xi depends on the partial derivative of both: the 
mean and stddev 

Ø  must also update ! and β  and β 

•  Why use the global mean and stddev at test time? 

Ø  removes the stochasticity of the mean and stddev 

Ø  requires a final phase where, from the first to the last hidden layer 
•  propagate all training data to that layer 
•  compute and store the global mean and stddev of each unit 

Ø  for early stopping, could use a running average 

Batch Normalization 



References

• Chapter 7-8, Deep Learning book


