Regularization and Optimization

Jian Tang

tangjianpku@gmail.com

What is regularization

- The goal of machine learning algorithm is to perform well on the training data and generalize well to new data
- Regularization are the techniques to improve the generalization ability
 - i.e., avoid overfitting

- Regularization
 - Parameter Norm Penalties
 - Data set Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Parameter Norm Penalties

• Adding a parameter norm penalty $\Omega(\theta)$ to the objective function J. The regularized objective function is denoted as:

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- $\alpha \in [0, \infty)$ is a hyperparameter that controls the weights of the regularization term
- For regularization neural networks
 - Only the weights of the linear transformation at each layer are regularized
 - The biases are not regularized

L² Parameter Regularization

- $\Omega(\theta) = \frac{1}{2} ||\mathbf{w}||^2$, also know as weight decay or ridge regression
- The objective function:

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}),$$
$$\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \boldsymbol{w} + \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}).$$

• Update w with SGD:

$$\boldsymbol{w} \leftarrow (1 - \epsilon \alpha) \boldsymbol{w} - \epsilon \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

• Push w towards zero

L¹ Parameter Regularization

- $\Omega(\theta) = ||\mathbf{w}||_1 = \sum_i w_i$,
- The objective function:

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha ||\boldsymbol{w}||_1 + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$
$$\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \operatorname{sign}(\boldsymbol{w}) + \nabla_{\boldsymbol{w}} J(\boldsymbol{X}, \boldsymbol{y}; \boldsymbol{w})$$

- Compare to L2 regularization, L1 regularization results in a solution that is more sparse
 - Some parameters have an optimal value of zero

L1 Regularization

• L1 regularization:

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} |W_{i,j}^{(k)}|$$

• Gradient:

$$\nabla_{\mathbf{W}^{(k)}} \Omega(\boldsymbol{\theta}) = \operatorname{sign}(\mathbf{W}^{(k)})$$
$$\operatorname{sign}(\mathbf{W}^{(k)})_{i,j} = 1_{\mathbf{W}^{(k)}_{i,j} > 0} - 1_{\mathbf{W}^{(k)}_{i,j} < 0}$$

- Only applies to weights, not biases (weigh decay)
- Can be interpreted as having a Laplace prior over the weights, while performing MAP estimation.
- Unlike L2, L1 will push some weights to be exactly 0.

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Data Augmentation

- Best way to improve the performance of machine learning
 - Train it with more data
- Create fake data and add it to the training data
 - Translation
 - Rotation
 - Random crops
 - Inject noise
 - ...

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Noise Robustness

- Adding noise to the weights
 - Push the model into regions where the model is relatively insensitive to small variations in the weights
 - Find points that are not merely minima, but minima surrounded by flat regions.
- Adding noise at the output targets
 - Most data sets have some amount of mistakes in the output labels: y
 - Explicitly model the noise on the labels
 - For example, the training label y is correct with probability $1-\epsilon$, and any of the other labels with probability ϵ

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Semi-supervised Learning

- Semi-supervised learning: both unlabeled examples from p(x) and labeled examples p(x,y) are used to estimate p(y|x)
- Share parameters between the unsupervised objective p(x) and supervised objective p(y|x)
 - E.g., for both objectives, the goal is to learn a representation h = f(x), which can be shared across the two objectives

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Multi-task Learning

 Jointly learning multi-tasks by sharing the same inputs and some intermediate representations, which capture a common pool of factors

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Early Stopping

• To select the number of epochs, stop training when validation set error increases (with some look ahead).

- Regularization
 - Parameter Norm Penalties
 - Dataset Augmentation
 - Noise Robustness
 - Semi-supervised Learning
 - Multi-task Learning
 - Early Stopping
 - Dropout

Dropout

- Overcome overfitting by a ensemble of multiple different models
 - Trained with different architectures
 - Trained on different data sets
- Too expensive on deep neural networks
- Dropout:
 - Training multiple networks together by parameter sharing

Dropout

• Key idea: Cripple neural network by removing hidden units stochastically

- each hidden unit is set to 0 with probability 0.5
- hidden units cannot co-adapt to other units
- hidden units must be more generally useful

• Could use a different dropout probability, but 0.5 usually works well

Dropout

- Use random binary masks m^(k)
 - layer pre-activation for k>0 \succ $\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$ $\mathbf{W}^{(3)}$ hidden layer activation (k=1 to L): \triangleright $\mathbf{h}^{(2)}(\mathbf{x})$... $\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x})) \odot \mathbf{m}^{(k)}$ $\mathbf{W}^{(2)}$ $\mathbf{h}^{(1)}(\mathbf{x})$... Output activation (k=L+1) \triangleright $\mathbf{W}^{(1)}$ $\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$ x_i x_1

Dropout at Test Time

- At test time, we replace the masks by their expectation
 - > This is simply the constant vector 0.5 if dropout probability is 0.5
 - For single hidden layer: equivalent to taking the geometric average of all neural networks, with all possible binary masks
- Can be combined with unsupervised pre-training
- Beats regular backpropagation on many datasets
- Ensemble: Can be viewed as a geometric average of exponential number of networks.

- Optimization
 - Parameter Initialization Strategies
 - Momentum
 - Adaptive Learning Rates (AdaGrad, RMSProp, Adam)
 - Batch Normalization

Parameter Initialization (Glorot and Bengio, 2010)

• For a fully connected network with *m* inputs and *n* outputs, the weights are sampled according to:

$$\mathbf{W}_{i,j} \sim U(-\frac{6}{\sqrt{m+n}}, \frac{6}{\sqrt{m+n}}).$$

• Which aims to tradeoff between the goal of initializing all layers to have the same **activation variance** and the goal of initializing all layers to have the same **gradient variance**

Tricks of the Trade

- Normalizing your (real-valued) data:
 - > for each dimension x_i subtract its training set mean
 - > divide each dimension x_i by its training set standard deviation
 - this can speed up training

• Decreasing the learning rate: As we get closer to the optimum, take smaller update steps:

- i. start with large learning rate (e.g. 0.1)
- ii. maintain until validation error stops improving
- iii. divide learning rate by 2 and go back to (ii)

Mini-batch, Momentum

• Make updates based on a mini-batch of examples (instead of a single example):

- > the gradient is the average regularized loss for that mini-batch
- > can give a more accurate estimate of the gradient
- > can leverage matrix/matrix operations, which are more efficient

• Momentum: Can use an exponential average of previous gradients:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

> can get pass plateaus more quickly, by "gaining momentum"

Why Momentum really works?

The momentum term reduces updates for dimensions whose gradients change directions.

The momentum term increases for dimensions whose gradients point in the same directions.

Demo : http://distill.pub/2017/momentum/

Adapting Learning Rates

• Updates with adaptive learning rates ("one learning rate per parameter")

Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients

$$\gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})\right)^2 \quad \overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

RMSProp: instead of cumulative sum, use exponential moving average

$$\begin{split} \gamma^{(t)} &= \beta \gamma^{(t-1)} + (1-\beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)^2 \\ \text{Adam: essentially combines} \\ \overline{\nabla}_{\theta}^{(t)} &= \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}} \end{split}$$

- Internal covariate shift
 - Covariate shift: Changes of input distribution to a learning system

 $\ell = F(x,\theta)$

• Internal covariate shift: Extension to the deep network

$$\ell = F_2(F_1(u, \theta_1), \theta_2)$$
$$= F_2(x, \theta_2)$$

- Normalizing the inputs will speed up training (Lecun et al. 1998)
 - could normalization be useful at the level of the hidden layers?

- Normalizing the inputs will speed up training (Lecun et al. 1998)
 - could normalization be useful at the level of the hidden layers?
- Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
 - each unit's pre-activation is normalized (mean subtraction, stddev division)
 - > during training, mean and stddev is computed for each minibatch
 - backpropagation takes into account the normalization
 - > at test time, the global mean / stddev is used

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$

Learned linear transformation to adapt to non-linear activation function (γ and β are trained)

- Why normalize the pre-activation?
 - > can help keep the pre-activation in a non-saturating regime (though the linear transform $y_i \leftarrow \gamma \hat{x}_i + \beta$ could cancel this effect)
- Why use minibatches?
 - since hidden units depend on parameters, can't compute mean/ stddev once and for all
 - > adds stochasticity to training, which might regularize

- How to take into account the normalization in backdrop?
 - > derivative w.r.t. x_i depends on the partial derivative of both: the mean and stddev
 - > must also update γ and β
- Why use the global mean and stddev at test time?
 - removes the stochasticity of the mean and stddev
 - > requires a final phase where, from the first to the last hidden layer
 - propagate all training data to that layer
 - compute and store the global mean and stddev of each unit

References

• Chapter 7-8, Deep Learning book