Regularization and Optimization

Jian Tang

tangjianpku@gmail.com

HEC MONTREAL

What is regularization

* The goal of machine learning algorithm is to perform well on the
training data and generalize well to new data

e Regularization are the techniques to improve the generalization
ability

* i.e., avoid overfitting

Outline

e Regularization

* Parameter Norm Penalties
Data set Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout

Parameter Norm Penalties

* Adding a parameter norm penalty (0(8) to the objective function J.
The regularized objective function is denoted as:

J(0: X.y) = J(0: X.y) + aQ(6)

* a € |0,00) is a hyperparameter that controls the weights of the
regularization term

* For regularization neural networks
* Only the weights of the linear transformation at each layer are regularized
* The biases are not regularized

L Parameter Regularization

2
¢ QU(0) = %|Iw|| , also know as weight decay or ridge regression

* The objective function:
~ (]

J(w: X.vy) :;wleLJ(w:X.y].

Ve (w: X.y) = aw + V. (w: X, y)
 Update w with SGD:

w+— (1 —eca)w — eV, J(w:; X, y)
 Push w towards zero

L' Parameter Regularization

« 0(6) = ||W||1 =2 Wi,
* The objective function:

f(LUXy] — u||*w\ 1 T+ J(w:X.yJ

Tw.;’{w: X.y) =asign(w) + Vi / (X, y:w)

 Compare to L2 regularization, L1 regularization results in a solution
that is more sparse

 Some parameters have an optimal value of zero

L1 Regularization

e L1 regularization:
k
0) = T 2, X, Wiy

e Gradient:
Vw<k>ﬂ(9) — Sign(w(k))

sign(WH)), . =1 —1

w0 T Twit <o

- Only applies to weights, not biases (weigh decay)

- Can be interpreted as having a Laplace prior over the weights, while
performing MAP estimation.

- Unlike L2, L1 will push some weights to be exactly O.

Outline

e Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout

Data Augmentation

* Best way to improve the performance of machine learning
* Train it with more data

* Create fake data and add it to the training data
e Translation
* Rotation
* Random crops

* Inject noise ’
\

EEHV

Outline

e Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout

Noise Robustness

* Adding noise to the weights

* Push the model into regions where the model is relatively insensitive to small
variations in the weights

* Find points that are not merely minima, but minima surrounded by flat
regions.

* Adding noise at the output targets
* Most data sets have some amount of mistakes in the output labels: y
» Explicitly model the noise on the labels

* For example, the training label y is correct with probability 1 — €, and any of
the other labels with probability €

Outline

e Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout

Semi-supervised Learning

e Semi-supervised learning: both unlabeled examples from p(x) and
labeled examples p(x,y) are used to estimate p(y|x)

* Share parameters between the unsupervised objective p(x) and
supervised objective p(y|x)

e E.g., for both objectives, the goal is to learn a representation h = f(x), which
can be shared across the two objectives

Outline

e Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout

Multi-task Learning

* Jointly learning multi-tasks by sharing the same inputs and some
intermediate representations, which capture a common pool of

factors
®

@5

Outline

e Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout

Early Stopping

 To select the number of epochs, stop training when validation set
error increases (with some look ahead).

O Training O Validation
0,5

04 underfitting overfitting
0,3
0,2

0,

0,0

number of epochs

Outline

e Regularization

* Parameter Norm Penalties
Dataset Augmentation
Noise Robustness
Semi-supervised Learning
Multi-task Learning
Early Stopping
Dropout

Dropout

* Overcome overfitting by a ensemble of multiple different models
* Trained with different architectures
* Trained on different data sets

* Too expensive on deep neural networks

* Dropout:
* Training multiple networks together by parameter sharing

Dropout

e Key idea: Cripple neural network by removing hidden units
stochastically

» each hidden unit is set to 0 with
probability 0.5

> hidden units cannot co-adapt to
other units

> hidden units must be more
generally useful h(® (x)

e Could use a different dropout
probability, but 0.5 usually works well

Dropout

e Use random binary masks m®

> layer pre-activation for k>0

a®) (x) = b*) 4 WE p(b=1) (x)
> hidden layer activation (k=1 to L):

h®) (x) = g(a® (x)) em®

> Output activation (k=L+1) h{) (x)

h(L+1)(X) _ O(a(L“)(x)) — £(x) w

Dropout at Test Time

o At test time, we replace the masks by their expectation

> This is simply the constant vector 0.5 if dropout probability is 0.5
> For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

e Can be combined with unsupervised pre-training

e Beats regular backpropagation on many datasets

 Ensemble: Can be viewed as a geometric average of exponential
number of networks.

Outline

* Optimization
e Parameter Initialization Strategies
* Momentum
* Adaptive Learning Rates (AdaGrad, RMSProp, Adam)
* Batch Normalization

Parameter Initialization (Glorot and Bengio,
2010)

* For a fully connected network with m inputs and n outputs, the
weights are sampled according to:
i b
v m n’ vm+n

 Which aims to tradeoff between the goal of initializing all layers to
have the same activation variance and the goal of initializing all layers

to have the same gradient variance

).

Wi ~ Ul

Tricks of the Trade

e Normalizing your (real-valued) data:

> for each dimension x; subtract its training set mean
> divide each dimension x; by its training set standard deviation

> this can speed up training

e Decreasing the learning rate: As we get closer to the optimum,
take smaller update steps:

i. start with large learning rate (e.g. 0.1)
ii. maintain until validation error stops improving

iii. divide learning rate by 2 and go back to (ii)

Mini-batch, Momentum

 Make updates based on a mini-batch of examples (instead of a
single example):
> the gradient is the average regularized loss for that mini-batch
> can give a more accurate estimate of the gradient

> can leverage matrix/matrix operations, which are more efficient

« Momentum: Can use an exponential average of previous

gradients:

VY = Vel(F(x®), 40 + gVy

> can get pass plateaus more quickly, by “gaining momentum”

Why Momentum really works?

The momentum term reduces updates for
dimensions whose gradients change directions.

Qmm

The momentum term increases for dimensions whose

gradients point in the same directions.
Demo : http://distill. pub/2017/momentum/

Optirmum

Q

Adapting Learning Rates

e Updates with adaptive learning rates (“one learning rate per
parameter”)

> Adagrad: learning rates are scaled by the square root of the
cumulative sum of squared gradients

2 o Vel(f(x1),y™)
(1) — o (t=1) £(x®),) ¥y = ’
ol y —+ <VQZ((X)7y)) 0 f}/(t) + €

> RMSProp: instead of cumulative sum, use exponential moving
average

YO = By 4 (1= B) (Vol(£(x1), y“)))2
S _ Vel(f(x1), y™)

> Adam: essentially combines
RMSProp with momentum

V., —
’ VD F e

Batch Normalization

* Internal covariate shift
e Covariate shift: Changes of input distribution to a learning system
¢ =F(x,0)

e Internal covariate shift: Extension to the deep network

t = F(Fi(u,6p),02)
= Fy(x,02)

 Normalizing the inputs will speed up training (Lecun et al. 1998)

> could normalization be useful at the level of the hidden layers?

Batch Normalization

* Normalizing the inputs will speed up training (Lecun et al. 1998)

> could normalization be useful at the level of the hidden layers?

e Batch normalization is an attempt to do that (loffe and Szegedy, 2014)

> each unit’s pre-activation is normalized (mean subtraction, stddev
division)

» during training, mean and stddev is computed for each minibatch

> backpropagation takes into account the normalization

> attest time, the global mean / stddev is used

Batch Normalization

Input: Values of z over a mini-batch: B = {z1. . };
Parameters to be learned: v, (3
Output: {y; = BN, g(z;)}

1 « .
KB — Z; x; // mini-batch mean
1 m
0% — 2:(:1:z — pg)? // mini-batch variance
i=1
T; Ti — BB // normalize
o Voete
' y; < Z; +B=BN,g(z;) | [/ scale and shift

Learned linear transformation to adapt to non-linear
activation function (y and 3 are trained)

Batch Normalization

 Why normalize the pre-activation?

> can help keep the pre-activation in a non-saturating regime
(though the linear transform y; < vx; + 3 could cancel this
effect)

 Why use minibatches?

> since hidden units depend on parameters, can’t compute mean/
stddev once and for all

> adds stochasticity to training, which might regularize

Batch Normalization

* How to take into account the normalization in backdrop?

> derivative w.r.t. x, depends on the partial derivative of both: the
mean and stddev
> must also update y and 3

 Why use the global mean and stddev at test time?

> removes the stochasticity of the mean and stddev

> requires a final phase where, from the first to the last hidden layer
propagate all training data to that layer
compute and store the global mean and stddev of each unit

References

* Chapter 7-8, Deep Learning book

