
Recurrent Neural Networks
Jian Tang

tangjianpku@gmail.com

1

RNN: Recurrent neural networks

• Neural networks for sequence modeling
• Summarize a sequence with fix-sized vector through recursively updating

ht = Fθ (ht−1, xt)

Recurrent Neural Networks
•  Selec1vely	summarize	an	input	sequence	in	a	fixed-size	state	

vector	via	a	recursive	update	

2	

stst�1 st+1

F✓ F✓ F✓

xtxt�1 xt+1x

s
F✓

unfold

è	Generalizes	naturally	to	new	lengths	not	seen	during	training	

shared	over	1me	✓

ht

h
ht−1 ht ht+1

Recurrent Neural Networks

ht = tanh(Wht−1 +Uxt)

• Can produce an output at each time step: unfolding the graph tell us
how to back-prop through time

Recurrent Neural Networks

ht = tanh(Wht−1 +Uxt)

• Produce a single output at the end of sequence

Language ModelingLanguage	Models

4/21/16Richard	Socher6

A	language	model	computes	a	probability	for	a	sequence	
of	words:

• Useful	for	machine	translation
• Word	ordering:

p(the	cat	is	small)	>	p(small	the	is	cat)

• Word	choice:
p(walking	home	after	school)	>	p(walking	house	after	
school)

RNN for Language Modeling

• Estimate the probability of a sequence

Recurrent	Neural	Network	language	model

4/21/16Richard	Socher10

Given	list	of	word	vectors:

At	a	single	time	step:

xt ht

ßà

Generative RNNs

4	
xtxt�1 xt+1

W
W W W

V V V

U U U

st�1

ot�1 ot

st st+1

ot+1

Lt+1Lt�1 Lt

xt+2

•  An	RNN	can	represent	a	fully-connected	directed	genera<ve	
model:	every	variable	predicted	from	all	previous	ones.	Recurrent	Neural	Network	language	model

4/21/16Richard	Socher10

Given	list	of	word	vectors:

At	a	single	time	step:

xt ht

ßà

RNN for Language ModelingRecurrent	Neural	Network	language	model

Main	idea:	we	use	the	same	set	of	W	weights	at	all	time	
steps!

Everything	else	is	the	same:

is	some	initialization	vector	for	the	hidden	layer	
at	time	step	0

is	the	column	vector	of	L	at	index	[t]	at	time	step	t

RNN for Language ModelingRecurrent	Neural	Network	language	model

4/21/16Richard	Socher12

is	a	probability	distribution	over	the	vocabulary

Same	cross	entropy	loss	function	but	predicting	words	
instead	of	classes

RNN for Language ModelingRecurrent	Neural	Network	language	model

4/21/16Richard	Socher13

Evaluation	could	just	be	negative	of	average	log	
probability	over	dataset	of	size	(number	of	words)	T:

But	more	common:	Perplexity:				2J

Lower	is	better!

Training RNN is very HardTraining	RNNs	is	hard

• Multiply	the	same	matrix	at	each	time	step	during	forward	prop

• Ideally	inputs	from	many	time	steps	ago	can	modify	output	y
• Take										for	an	example	RNN	with	2	time	steps!	Insightful!

4/21/16Richard	SocherLecture	1,	Slide	 14

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Gradient Vanishing/ExplodingThe	vanishing/exploding	gradient	problem

• Multiply	the	same	matrix	at	each	time	step	during	backprop

4/21/16Richard	SocherLecture	1,	Slide	 15

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

DetailsThe	vanishing	gradient	problem	- Details

• Similar	but	simpler	RNN	formulation:

• Total	error	is	the	sum	of	each	error	at	time	steps	t

• Hardcore	chain	rule	application:

4/21/16Richard	SocherLecture	1,	Slide	 16

DetailsThe	vanishing	gradient	problem	- Details

• Similar	to	backprop but	less	efficient	formulation
• Useful	for	analysis	we’ll	look	at:

• Remember:
• More	chain	rule,	remember:

• Each	partial	is	a	Jacobian:

4/21/16Richard	SocherLecture	1,	Slide	 17

DetailsThe	vanishing	gradient	problem	- Details

• From	previous	slide:	

• Remember:

• To	compute	Jacobian,	derive	each	element of	matrix:	

• Where:

4/21/16Richard	SocherLecture	1,	Slide	 18

ht−1 ht

Check	at	home	
that	you	understand
the	diag matrix	
formulation

DetailsThe	vanishing	gradient	problem	- Details

• Analyzing	the	norms	of	the	Jacobians,	yields:

• Where	we	defined	̄ ‘s	as	upper	bounds	of	the	norms
• The	gradient	is	a	product	of	Jacobianmatrices,	each	associated	

with	a	step	in	the	forward	computation.	

• This	can	become	very	small	or	very	large	quickly	[Bengio et	al	
1994],	and	the	locality	assumption	of	gradient	descent	breaks	
down.	à Vanishing	or	exploding	gradient

4/21/16Richard	SocherLecture	1,	Slide	 19

Long-short Term Memory (LSTM)

• From multiplication to summation

Long-short-term-memories	(LSTMs)

4/26/16Richard	Socher31

• We	can	make	the	units	even	more	complex

• Allow	each	time	step	to	modify	

• Input	gate	(current	cell	matters)

• Forget	(gate	0,	forget	past)

• Output	(how	much	cell	is	exposed)

• New	memory	cell

• Final	memory	cell:

• Final	hidden	state:	

Gated Recurrent Unit (GRU, Cho et al. 2014)GRUs

4/26/16Richard	Socher27

• Update	gate	

• Reset	gate

• New	memory	content:
If	reset	gate	unit	is	~0,	then	this	ignores	previous	
memory	and	only	stores	the	new	word	information	

• Final	memory	at	time	step	combines	current	and	
previous	time	steps:		

Gated Recurrent Unit (GRU, Cho et al. 2014)
Attempt	at	a	clean	illustration

4/26/16Richard	Socher28

rtrt-1

zt-1

~ht~ht-1

zt

ht-1 ht

xtxt-1Input:

Reset	gate

Update	gate

Memory	 (reset)

Final	memory

Gated Recurrent Unit (GRU, Cho et al. 2014)GRU	intuition

4/26/16Richard	Socher29

• If	reset	is	close	to	0,	
ignore	previous	hidden	state
à Allows	model	to	drop	
information	that	is	irrelevant
in	the	future

• Update	gate	z	controls	how	much	of	past	state	should	
matter	now.
• If	z	close	to	1,	then	we	can	copy	information	in	that	unit	

through	many	time	steps!	Less	vanishing	gradient!

• Units	with	short-term	dependencies	often	have	reset	
gates	very	active

Gated Recurrent Unit (GRU, Cho et al. 2014)GRU	intuition

4/26/16Richard	Socher30

• Units	with	long	term	
dependencies	have	active
update	gates	z

• Illustration:	

• Derivative	of																	?	à rest	is	same	chain	rule,	but
implement	with	modularization or	automatic	
differentiation

where ✓ is the set of the model parameters and
each (xn,yn) is an (input sequence, output se-
quence) pair from the training set. In our case,
as the output of the decoder, starting from the in-
put, is differentiable, we can use a gradient-based
algorithm to estimate the model parameters.

Once the RNN Encoder–Decoder is trained, the
model can be used in two ways. One way is to use
the model to generate a target sequence given an
input sequence. On the other hand, the model can
be used to score a given pair of input and output
sequences, where the score is simply a probability
p✓(y | x) from Eqs. (3) and (4).

2.3 Hidden Unit that Adaptively Remembers

and Forgets

In addition to a novel model architecture, we also
propose a new type of hidden unit (f in Eq. (1))
that has been motivated by the LSTM unit but is
much simpler to compute and implement.1 Fig. 2
shows the graphical depiction of the proposed hid-
den unit.

Let us describe how the activation of the j-th
hidden unit is computed. First, the reset gate rj is
computed by

rj = �
⇣
[Wrx]j +

⇥
Urhht�1i

⇤
j

⌘
, (5)

where � is the logistic sigmoid function, and [.]j
denotes the j-th element of a vector. x and ht�1

are the input and the previous hidden state, respec-
tively. Wr and Ur are weight matrices which are
learned.

Similarly, the update gate zj is computed by

zj = �
⇣
[Wzx]j +

⇥
Uzhht�1i

⇤
j

⌘
. (6)

The actual activation of the proposed unit hj is
then computed by

hhtij = zjh
ht�1i
j + (1� zj)h̃

hti
j , (7)

where

h̃htij = �
⇣
[Wx]j +

⇥
U

�
r� hht�1i

�⇤
j

⌘
. (8)

In this formulation, when the reset gate is close
to 0, the hidden state is forced to ignore the pre-
vious hidden state and reset with the current input

1 The LSTM unit, which has shown impressive results in
several applications such as speech recognition, has a mem-
ory cell and four gating units that adaptively control the in-
formation flow inside the unit, compared to only two gating
units in the proposed hidden unit. For details on LSTM net-
works, see, e.g., (Graves, 2012).

�

�� �� �

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state h̃. The reset gate r decides
whether the previous hidden state is ignored. See
Eqs. (5)–(8) for the detailed equations of r, z, h
and h̃.

only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation.

On the other hand, the update gate controls how
much information from the previous hidden state
will carry over to the current hidden state. This
acts similarly to the memory cell in the LSTM
network and helps the RNN to remember long-
term information. Furthermore, this may be con-
sidered an adaptive variant of a leaky-integration
unit (Bengio et al., 2013).

As each hidden unit has separate reset and up-
date gates, each hidden unit will learn to capture
dependencies over different time scales. Those
units that learn to capture short-term dependencies
will tend to have reset gates that are frequently ac-
tive, but those that capture longer-term dependen-
cies will have update gates that are mostly active.

In our preliminary experiments, we found that
it is crucial to use this new unit with gating units.
We were not able to get meaningful result with an
oft-used tanh unit without any gating.

3 Statistical Machine Translation

In a commonly used statistical machine translation
system (SMT), the goal of the system (decoder,
specifically) is to find a translation f given a source
sentence e, which maximizes

p(f | e) / p(e | f)p(f),

where the first term at the right hand side is called
translation model and the latter language model
(see, e.g., (Koehn, 2005)). In practice, however,
most SMT systems model log p(f | e) as a log-
linear model with additional features and corre-

Deep Bidirectional RNN (Irsoy and Cardie)Deep	Bidirectional	RNNs	by	Irsoy and	Cardie

4/26/16Richard	Socher6

Going Deep

h
! (i)
t = f (W

!"! (i)
ht
(i−1) +V

!" (i)
h
! (i)
t−1 + b
! (i)
)

h
! (i)
t = f (W

!"" (i)
ht
(i−1) +V

!" (i)
h
! (i)
t+1 + b
! (i)
)

yt = g(U[h
!
t
(L)
;h
!
t
(L)
]+ c)

y

h(3)

x
Each memory layer passes an intermediate sequential
representation to the next.

h(2)

h(1)

Optimization for Long-term Dependencies

• Avoiding gradient exploding
• Clipping Gradients

Optimization for Long-term Dependencies

• Avoiding gradient vanishing
• With LSTM or GRU
• Or regularize or constrain the parameters so as to encourage “information

flow”

• Make !"!#$
!#$
!#$%&

close to !"!#$
. Pascanu et al. (2013a) propose the

following regularizer:

Ω =)
*
(
| -.-ℎ*

-ℎ*
-ℎ*01 |

|| -.-ℎ* ||
− 1)5

Applications: Language Modeling

Applications: Sentence Classification

Applications: Sequence Tagging

Figure: Bidirectional LSTM-CRF

Applications: Sequential Recommendation

Figure: User sequential behaviors

References

• Chapter 10, Deep Learning Book

