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Classification

• Assign an input real-valued vector x into K discrete classes !" "#$,…,'

X: set of pixel intensities
Y: cancer present/cancer absent

X: user reviews
Y: positive/neural/negative



Linear Classification
• Goal: Assign an input real-valued vector x into K discrete classes 
!" "#$,…,'

• The input space is divided into different decision regions whose 
boundaries are called decision boundaries or decision surfaces.

• Linear classification: the model is linear w.r.t. the parameters

• For classification, we need to predict discrete classes, or posterior 
probabilities that lie in the range of (0,1), and therefore a nonlinear 
function f is used.

adaptive parameters fixed nonlinear function:  
activation function



Linear Classification

• The decision boundary :                           i.e.,
• The decision boundary are linear functions of x
• Even if f is a nonlinear function

• Note: these models are not linear w.r.t. the parameters any more

Support vector machine Logistic regression



Notation

• Binary Classification: target ! ∈ {0,1}, t=1 represents the positive 
class and t=0 represents the negative class
• Multi-class classification: one-hot encoding
• E.g.,  if there are K=5 classes, an input belonging to the second class 

can be encoded as 

• Which can be interpreted as the probabilities belonging to each class



Three Approaches for Classification

• Construct a discriminant function that directly maps an input to a 
class (e.g., support vector machine)  
• Model the conditional distribution 
• Two alternative approaches
• Discriminative model: directly model the conditional probability              (e.g., 

logistic regression)
• Generative model: model the joint probability !(x, %&). The conditional

probability can be calculated as:

(e.g. Naïve Bayes).



Outline: Linear Classification

• Discriminant Function 
• Generative Models
• Discriminative Models



Discriminant Functions
• Consider
• Assign x to C1 if and class C2 otherwise
• Decision boundary:
• If two points !" and !# lie on the same
decision surface:

• w is orthogonal to the decision surface
• If x is on the decision surface

determines the location of decision surface



Multiple Classes

• How to extend K>2 classes
• One option is to use K-1 classifiers, each of which
solves a two-class problem:
• Separates class from the rest of the classes

• There are regions in the input space that are
ambiguously classified

One-versus-the-rest

!"



Multiple Classes

• An alternative solution is to use K(K-1)/2 binary
discriminant functions
• Each function discriminates two classes

• Similar problem of ambiguous regions

One-versus-one



Simple Solution
• Use K discriminant functions of the form:

• Assign x to if (pick the max)
• Can guarantee to give decision boundaries that are singly connected
and convex
• For any two points that lie inside region

implies that

due to linearity of the discriminant functions

!"



The Perceptron Algorithm
• Another example of a linear discriminant function
• Consider the following generalized linear model:

• Where nonlinear function f(.) is given by a step function

• and x is transformed using a fixed nonlinear function
• Hence we have a two-class model



The Perceptron Algorithm
• A natural choice of error function would be the total number of

misclassified examples (but hard to optimize, discontinuous)
• Consider an alternative error function:
• First, note that
• Patterns !" in class should satisfy that�

• Patterns !" in class should satisfy that�

• Using the target coding # ∈ {−1,1}, we see that we would like all
patterns to satisfy:

*+

*,



Error Function
• Using the target coding ! ∈ {−1,1}, we see that we would like all
patterns to satisfy:

• The error function is therefore given by :

• The error function is linear w.r.t. w in regions of w space where the
example is misclassified and 0 in regions where it is correctly
classified.
• The error function is piece-wise linear

M denotes all misclassified examples.



Error Function
• We can use stochastic gradient descent. Given a misclassified
example, the change of weight is:

• Since the perceptron function is unchanged if we
multiple w by a constant, we set ||w||=1
• The contribution to the error function from the misclassified example
will be reduced

! is the learning rate

Always positive



Error Function
• Note that the contribution to the error function from the
misclassified example will be reduced:

• However, the change in w may cause some previously correctly
classified examples to be misclassified. No convergence guarantees in
general.

Always positive



Outline: Linear Classification

• Discriminant Function 
• Generative Models
• Discriminative Models



Probabilistic Generative Models
• Model class conditional probability p(x|%&) and class prior p(%&)
separately (e.g., Naïve Bayes)

• Take the binary classification as an example, the posterior probability
of class %(

• a is known as the logit function, which represents the log or the
ration of probabilities of two classes, as known as the log-odds.

Logistic sigmoid  
function



Sigmoid Function

• The posterior probability of class !":

• The term sigmoid maps the real space to (0,1), and satisfies:
Sigmoid function



Softmax Function

• For K>2 classes, we generalize the sigmoid function to the softmax:

• Softmax function represents a smoothed version of max function



Example of Continuous Inputs
• Assuming that the input vectors for reach class are from a Gaussian
distribution, and all classes share the same covariance matrix�

• For binary classification, the posterior is the logistic function�

• The quadratic terms in x is cancelled (the same covariance matrix)
• This leads to a linear function of x in the argument of logistic sigmoid.
Hence the decision boundaries are linear in input space.



Example of Two Gaussian Models

Class-conditional densities for  
two classes

The corresponding posterior  
probability given by the 
sigmoid function of a linear  
function of x.



Case of K>2 Classes
• For the case of K classes, the posterior is a softmax function:

• Similar to binary classification, we define:

• Again, the decision boundaries are linear in input space.
• If we allow each class-conditional density to have its own covariance,
we will obtain quadratic function of x (quadratic discriminant).



• The decision boundary is linear when the covariance 
matrices are the same and quadratic when they are not.

Class-conditional densities for  
three classes

The corresponding posterior  
probabilities for three classes.

Quadratic Discriminant



Maximum Likelihood Solution

• Take the binary classification as an example, each having a Gaussian
class-conditional density with the same covariance matrix

• We observe a dataset:
• tn=1 denotes class C1, tn=0 denotes class C2
• And also

• The likelihood function�

• Maximize the likelihood function
Data points  
from class C1.

Data points  
from class C2.



Maximum Likelihood Solution

• Maximize w.r.t. !. The terms of the log-likelihood functions depends
on !:

• Maximize w.r.t. "#: the terms depending on "#:

Differentiating, we get: And similarly:

Differentiating, we have



Maximum Likelihood Solution

• Maximize w.r.t. Σ:

• Here:
•Using standard results for a  Gaussian 
distribution we have:

•Maximum likelihood solution  represents a 
weighted average of  the covariance matrices 
associated  with each of the two classes.



Outline: Linear Classification

• Discriminant Function 
• Generative Models
• Discriminative Models



Logistic Regression
• For binary classification, the posterior probability of class !" can be
written as sigmoid function

• and and we omit the bias term for clarity.
• This model is known as logistic regression (although this is a  

model for classification rather than regression).
Note that for generative models, we would
first determine the class conditional  
densities and class-specific priors, and 
then  use Bayes’ rule to obtain the 
posterior  probabilities.

Here we model directly.

logistic sigmoid function



ML for Logistic Regression
• We observed a training dataset
• Maximize the probability of getting the label right, so the likelihood  
function takes form:

• Taking the negative log of the likelihood, we can define the cross-
entropy error function (that we want to minimize):

• Differentiating and using the chain rule:

• Note that the factor involving the derivative of the logistic function cancelled.



ML for Logistic Regression
• We therefore obtain:

targetprediction

• This takes exactly the same form as the gradient of the sum-of- squares 
error function for the linear regression model.

• Unlike in linear regression, there is no closed form solution, due  to 
nonlinearity of the logistic sigmoid function.

• The error function is convex and can be optimized using standard  gradient-
based (or more advanced) optimization techniques.



Multiclass Logistic Regression
• For multiclass case, the posterior probability is represented by a softmax
transformation of linear functions of input variables:
•

• Maximum likelihood is used to determine the parameters of this discriminative 
model directly.
• Suppose we observe a data set                                 , where we use 1-of-K encoding 

for the target vector      .
• So if       belongs to class !", then t is a binary vector of length K containing a 

single 1 for element k (the correct class) and 0 elsewhere.
• For example, K=5, an input belonging to class 2 would be given a target vector:

Multiclass Logistic Regression 
•  For the multiclass case, we represent posterior probabilities by a 
softmax transformation of linear functions of input variables: 

•  Unlike in generative models, here we will use maximum likelihood to 
determine parameters of this discriminative model directly.  

•  As usual, we observed a dataset                                       where 
we use 1-of-K encoding for the target vector tn.  

•  So if xn belongs to class Ck, then t is a binary vector of length K 
containing a single 1 for element k (the correct class) and 0 elsewhere.  

•  For example, if we have K=5 classes, then an input that belongs to 
class 2 would be given a target vector: 
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Multiclass Logistic Regression
• We can write down the likelihood function:

• Where
• Taking the negative logarithm gives the cross-entropy entropy function  for 

multi-class classification problem:

• Take the gradient:

N x K binary matrix of  
target variables.

Only one term corresponding  
to correct class contributes.



Special Case of Softmax

• If we consider a softmax function for two classes

• So the logistic sigmoid is just a special case of the softmax function that        
avoids using redundant parameters:
• Adding the same constant to both a1 and a2 has no effect.
• The over-parameterization of the softmax is because probabilities  must add up to one.



Summary
• Generative approach: Determine  the 

class conditional densities and  class-
specific priors, and then use  Bayes’ 
rule to obtain the posterior  
probabilities.
– Different models can be trained  

separately on different  machines.
– It is easy to add a new class  without 

retraining all the other  classes.

• Discriminative approach: Train  all of 
the model parameters to  maximize 
the probability of  getting the labels
right.

• Model directly.
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