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Evaluation

• Course Projects:
• Students should work on course projects in teams (at most 4 students).
• At the end of this course, each team should make a presentation (30%, 20

minutes) and also hand in a project report (70%, due in two weeks after the 
course is finished).

• Project report
• Should give a clear definition of the problem (10%)
• A detailed survey of the problem (25%)
• A proposal (35%)
• Some preliminary results (not required, + 10 %)
• Five pages in total (NIPS format, English)



Course Outline

• Introduction & Mathematics (Day 1)
• Machine Learning Basics (Day 2 )
• Feedforward Neural Networks & Optimization Tricks (Day 2 & 3)
• Convolutional Neural Networks (Day 3)
• Recurrent Neural Networks (Day 3)
• Deep Learning for Natural Language Understanding (Day 4)
• Graph Representation Learning (Day 5)
• Presentation Session (Day 6)



Schedule Today

• Lecture 1
• Discussion session 1: project discussion
• Lecture 2
• Discussion session 2: project discussion
• Lecture 3



What is Machine Learning?

“Machine learning is a field of computer science that often uses 

statistical techniques to give computers the ability to "learn" (i.e., 

progressively improve performance on a specific task) with data, 

without being explicitly programmed.”
-Wikipedia

-From https://www.youtube.com/watch?v=2QgyH29x0_M

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Data


Regression

• Learning a function f: !" → !
• The goal is to accurately predict the target values

X: message features
Y: the number of likes

X: paper features
Y: the number of citations



Classification

• Learning a function f: !" → 1,… , '
• Accurately predict the category of the input data

X: set of pixel intensities
Y: cancer present/cancer absent

X: user reviews
Y: positive/neural/negative



Ranking

• Learning a function f: !" → !
• The goal is to rank the items according to the regression values

Web Search Recommender Systems



Clustering

• Group the data into different clusters
• But the clusters are not predefined.

User segmentation Image clustering



Structured Output

• There are multiple values of the outputs with structured relationships 
between them

Part-of-speech tagging Machine translation



Three Different Categories of Machine 
Learning Algorithms

Image from Internet

• Data with labels
• Classification & regression

• We have training set for which we
given right answer for every training
algorithm

• Training examples contains all the
right answers

• Job- to replicate the right answers



Three Different Categories of Machine 
Learning Algorithms

Image from Internet

• Data without labels
• Clustering
• Dimension reduction

• Find structures within data



Three Different Categories of Machine 
Learning Algorithms

Image from Internet

• Sequential decision process
• Trial-and-error paradigms
• We do not have a target variable
• We have reward signals
• Perform an action and receive

a reward from the environment
• the game Go

• Agents need to plan the path to
obtain maximal reward



Outline: Linear Regression

• What is Linear Regression
• Model Capacity, Overfitting, and Undefitting
• Regularization
• Cross Validation
• Decision Theory



Linear Regression

• Given a vector of d-dimensional inputs ! = #$, #&, … , #( ), we want 
to predict the target (response) using the linear model:

• where* ∈ ,-./ is a vector of parameters, 01 is the intercept.

• Training set: a set of training data points 2 = !/, !3, … , !4 ) and 
their labels 5 = 5$, 5&, … , 56 )
• the goal is to learn the parameter *

7 = 01 + 0$#$ +⋯+0(#( = 01 + ∑;<$( 0;#; ,

7(!,*) = !?*



Least Square Regression (LSR)

• Training criteria: minimizing the sum of the errors between the 
predictions by the model ! "#,% and the targets &#:

Linear	Least	Squares	
One	opCon	is	to	minimize	the	sum	of	the	squares	of	the	errors	between	the	
predicCons																			for	each	data	point	xn	and	the	corresponding	real-valued		
targets	tn.			

Loss	funcCon:	sum-of-squared	error	funcCon:	

Source:	Wikipedia	

' ( = 1/2-
#./

0
! "#,% − &# 2



Least Square Regression (LSR)

• Unique solutions if !"! is nonsingular

Linear	Least	Squares	
One	opCon	is	to	minimize	the	sum	of	the	squares	of	the	errors	between	the	
predicCons																			for	each	data	point	xn	and	the	corresponding	real-valued		
targets	tn.			

Loss	funcCon:	sum-of-squared	error	funcCon:	

Source:	Wikipedia	

#∗ = !"! &'!"(



Example ( with only one input feature)



Outline: Linear Regression

• What is Linear Regression
• Model Capacity, Overfitting, and Undefitting
• Regularization
• Cross Validation
• Decision Theory



Model Capacity, Underfitting, and Overfitting

• The goal of machine learning model is to maximize the generalization
ability
• Perform well on previously unobserved inputs

• Training data => training error
• Test data => test error (generalization error)
• For linear regression: 
• Train the model by minimizing the train error
• Evaluate the performance of the model according to the test error



Model Capacity, Underfitting, and Overfitting

• Model capacity: the ability to fit a variety of functions
• Models with more parameters usually have larger capacity

• Underfitting: model is not able to obtain a sufficiently low error value 
on the training set
• Overfitting: perform wells on training data but not on the test data



Example: Polynomial Curve Fitting

• Given a 1-dimensional observation x, predict a scale t?
• The model is a linear function of the coefficients of w



Sum-of-Squares Error Function

How to choose M?



M = 0



M = 1



M = 3



M = 9

• Fits the training data perfectly but does not perform well on other data points



Over-fitting

• Performs very well on the training data while very bad on unseen data (test data)



Generalization v.s. Capacity



Polynomial Coefficients   Overfimng	

• 	As	M	increases,	the	magnitude	of	coefficients	gets	larger.			

• 	For	M=9,	the	coefficients	have	become	finely	tuned	to	the	data.	

• 	Between	data	points,	the	funcCon	exhibits	large	oscillaCons.	

More	flexible	polynomials	with	larger	M	tune	to	the	random	noise	on	the	
target	values.	

• As M increases, the magnitude of coefficients becomes larger
• M=9, the model overfits to the data



What if we increase the size of data N?
9th Order Polynomial

• The issue of overfitting reduces if we increase the data size N
• This is one of the reasons why machine learning/deep learning works now



Outline: Linear Regression

• What is Linear Regression
• Model Capacity, Overfitting, and Undefitting
• Regularization
• Cross Validation
• Decision Theory



Regularization

• Penalize large coefficient values

• Tend to choose models with parameters towards zero
• Penalize coefficients according to their L2 norm

• Also known as “weight decay” or “ridge regression”

A	Simple	Way	to	Penalize	Complexity		
One	technique	for	controlling	over-fimng	phenomenon	is	regulariza4on,	
which	amounts	to	adding	a	penalty	term	to	the	error	funcCon.		

where		 																					 	 														and	¸	is			called	the	regularizaCon	term.	
Note	that	we	do	not	penalize	the	bias	term	w0.	 	 			

• 	The	idea	is	to	“shrink”	esCmated	parameters	
towards	zero	(or	towards	the	mean	of	some	other	
weights).	
• 	Shrinking	to	zero:	penalize	coefficients	based	on	
their	size.	
• 	For	a	penalty	funcCon	which	is	the	sum	of	the	
squares	of	the	parameters,	this	is	known	as	“weight	
decay”,	or		“ridge	regression”.					

penalized	error		
funcCon	

regularizaCon		
parameter	

target	value	

! " = 1/2'
()*

+
, -(,/ − 1( 2 + 42 / 5



Regularization: 



Regularization: 



Regularization:           vs. 

How to choose ?



Outline: Linear Regression

• What is Linear Regression
• Model Capacity, Overfitting, and Undefitting
• Regularization
• Cross Validation
• Decision Theory



Cross Validation

• Divide the data set into three subsets
• Training: used to learn the model parameters
• Validation: used to select the model,hyper-parameters (e.g., regularization)
• Test: evaluate the performance of the models

• K-fold cross validation
• Use as much training data as possible

Cross	ValidaCon	
If	the	data	is	plenCful,	we	can	divide	the	dataset	into	three	subsets:	
•  Training	Data:	used	to	fimng/learning	the	parameters	of	the	model.	
•  ValidaCon	Data:	not	used	for	learning	but	for	selecCng	the	model,	
or	choosing	the	amount	of	regularizaCon	that	works	best.	

•  Test	Data:	used	to	get	performance	of	the	final	model.		

For	many	applicaCons,	the	supply	of	data	for	training	and	tesCng	is	limited.	
To	build	good	models,	we	may	want	to	use	as	much	training	data	as	possible.	
If	the	validaCon	set	is	small,	we	get	noisy	esCmate	of	the	predicCve	performance.		

S	fold	cross-validaCon	 • 	The	data	is	parCConed	into	S	groups.	
• 	Then	S-1	of	the	groups	are	used	for	training	
the	model,	which	is	evaluated	on	the	
remaining	group.	
• 	Repeat	procedure	for	all	S	possible	choices	
of	the	held-out	group.	
• 	Performance	from	the	S	runs	are	averaged.		



Outline: Linear Regression

• What is Linear Regression
• Model Capacity, Overfitting, and Undefitting
• Regularization
• Cross Validation
• Decision Theory



Probabilistic Perspective of Linear Regression
• Now the objective is modeled as error minimization 
• A statistical view:
• ϵ is a random vector having Gaussian distribution with zero mean, 

and independent with ".

# = % ",' + ϵ,

ProbabilisCc	PerspecCve	
• 	So	far	we	saw	that	polynomial	curve	fimng	can	be	expressed	in	terms	of	
error	minimizaCon.	We	now	view	it	from	probabilisCc	perspecCve.		

• 	Suppose	that	our	model	arose	from	a	staCsCcal	model:	

where	²	is	a	random	error	having	Gaussian	distribuCon	with	zero	mean,	
and	is	independent	of	x.		

where	¯	is	a	precision	parameter,	
corresponding	to	the	inverse	variance.			

Thus	we	have:	

I will use probability distribution and 
probability density interchangeably. It 
should be obvious from the context.

) # ",', * = +(#|% ",' , *./),
* is a precision parameter, corresponding to 
the inverse variance



Maximum Likelihood
• Calculating the Data Likelihood

• Maximum data likelihood w.r.t. ! = minimizing the sum of squared 
error
• Maximum data likelihood w.r.t. ":

Maximum	Likelihood	
If	the	data	are	assumed	to	be	independently	and	idenCcally	distributed	
(i.i.d	assump*on),	the	likelihood	funcCon	takes	form:			

It	is	oren	convenient	to	maximize	the	log	of	the	likelihood	funcCon:	

• 	Maximizing	log-likelihood	with	respect	to	w	(under	the	assumpCon	of	a	
Gaussian	noise)	is	equivalent	to	minimizing	the	sum-of-squared	error	funcCon.		

• 	Determine												by	maximizing	log-likelihood.	Then	maximizing	w.r.t.	¯:		



Predictive Distribution
• Once the optimum ! and " are found, the predictions for new value 
# can be calculated as:  

PredicCve	DistribuCon	
Once	we	determined	the	parameters	w	and	¯,	we	can	make	predicCon	for	
new	values	of	x:			

Later	we	will	consider	Bayesian	linear	regression.		



Maximum A Posterior (MAP)-Bayes View

Determine               by minimizing regularized sum-of-squares error:                 

• Bayes view: every parameter is a random variable
• The prior distribution of the parameter 

• The posterior distribution of the parameter:
• According to Bayes Theorem:



Statistical Decision Theory

StaCsCcal	Decision	Theory	

The	joint	probability	distribuCon														provides	a	complete	summary	of	
uncertainCes	associated	with	these	random	variables.		

-  for	regression:	t	is	a	real-valued	conCnuous	target.	
-  for	classificaCon:	t	a	categorical	variable	represenCng	class	labels.			

Determining														from	training	data	is	known	as	the	inference	problem.			

• 	We	now	develop	a	small	amount	of	theory	that	provides	a	framework	
for	developing	many	of	the	models	we	consider.		

• 	Suppose	we	have	a	real-valued	input	vector	x	and	a	corresponding	
target	(output)	value	t	with	joint	probability	distribuCon:		

• 	Our	goal	is	predict	target	t	given	a	new	value	for	x:	



Example: Classification
• Medical image classification: whether the patient has cancer or not

• t as a binary variation: t=0 (with cancer), t=1 (without cancer)

Example:	ClassificaCon	
Medical	diagnosis:	Based	on	the	X-ray	image,	we	would	like	determine	
whether	the	paCent	has	cancer	or	not.			

	C1:	Cancer	present	

C2:	Cancer	absent	

• 	The	input	vector	x	is	the	set	of	pixel	intensiCes,	and	the	output	variable	t	will	
represent	the	presence	of	cancer,	class	C1,	or	absence	of	cancer,	class	C2.		

• 	Choose	t	to	be	binary:	t=0	correspond	to	class	C1,	and	t=1	corresponds	to	C2.	

x	--	set	of	pixel	intensiCes	

Inference	Problem:	Determine	the	joint	distribuCon 								,							or	equivalently													
												.		However,	in	the	end,	we	must	make	a	decision	of	whether	to	give	
treatment	to	the	paCent	or	not.		

Example:	ClassificaCon	
Medical	diagnosis:	Based	on	the	X-ray	image,	we	would	like	determine	
whether	the	paCent	has	cancer	or	not.			

	C1:	Cancer	present	

C2:	Cancer	absent	

• 	The	input	vector	x	is	the	set	of	pixel	intensiCes,	and	the	output	variable	t	will	
represent	the	presence	of	cancer,	class	C1,	or	absence	of	cancer,	class	C2.		

• 	Choose	t	to	be	binary:	t=0	correspond	to	class	C1,	and	t=1	corresponds	to	C2.	

x	--	set	of	pixel	intensiCes	

Inference	Problem:	Determine	the	joint	distribuCon 								,							or	equivalently													
												.		However,	in	the	end,	we	must	make	a	decision	of	whether	to	give	
treatment	to	the	paCent	or	not.		



Minimum Expected Loss
• Loss function: measure of the loss incurred by taking any of the 

available decisions:
• E.g., suppose x belong to class k while we assign x to class j, this incur loss 
!"#(an element of a loss matrix)

• Example: medical image classification 

Expected	Loss	

Consider	medical	diagnosis	example:	example	of	a	loss	matrix:	

• 	Loss	FuncCon:	overall	measure	of	loss	incurred	by	taking	any	of	the	available	
decisions.		
• 	Suppose	that	for	x,	the	true	class	is	Ck,	but	we	assign	x	to	class	j		
			!	incur	loss	of	Lkj		(k,j	element	of	a	loss	matrix).				

Expected	Loss:	

Decision	

Tr
ut
h	

Goal	is	to	choose	decision	regions								as	to	minimize	expected	loss.	



Example: Regression

• x: a real-valued input vector variable, t: a real-valued output (target) 
variable, with the joint distribution p(x,t)
• Decision: find an estimate y(x) of t for each input x 
• Define the loss function:  ! ", $ % .
• The average/expected loss

• Squared loss:

Regression	

• 	The	decision	step	consists	of	finding	an	esCmate	y(x)	of	t	for	each	input	x.				

• 	The	average,	or	expected,	loss	is	given	by:	

• 	To	quanCfy	what	it	means	to	do	well	or	poorly	on	a	task,	we	need	to	
define	a	loss	(error)	funcCon:	

Let	x	2	Rd	denote	a	real-valued	input	vector,	and	t	2	R	denote	a	real-
valued	random	target	(output)	variable	with	joint	the	distribuCon														

• 	If	we	use	squared	loss,	we	obtain:	

Regression	

• 	The	decision	step	consists	of	finding	an	esCmate	y(x)	of	t	for	each	input	x.				

• 	The	average,	or	expected,	loss	is	given	by:	

• 	To	quanCfy	what	it	means	to	do	well	or	poorly	on	a	task,	we	need	to	
define	a	loss	(error)	funcCon:	

Let	x	2	Rd	denote	a	real-valued	input	vector,	and	t	2	R	denote	a	real-
valued	random	target	(output)	variable	with	joint	the	distribuCon														

• 	If	we	use	squared	loss,	we	obtain:	

Regression	

• 	The	decision	step	consists	of	finding	an	esCmate	y(x)	of	t	for	each	input	x.				

• 	The	average,	or	expected,	loss	is	given	by:	

• 	To	quanCfy	what	it	means	to	do	well	or	poorly	on	a	task,	we	need	to	
define	a	loss	(error)	funcCon:	

Let	x	2	Rd	denote	a	real-valued	input	vector,	and	t	2	R	denote	a	real-
valued	random	target	(output)	variable	with	joint	the	distribuCon														

• 	If	we	use	squared	loss,	we	obtain:	



Square Loss Function
• Square loss function:

• Goal: find y(x) to minimize the above objective function
• The optimal solution is the conditional average:

Regression	

• 	The	decision	step	consists	of	finding	an	esCmate	y(x)	of	t	for	each	input	x.				

• 	The	average,	or	expected,	loss	is	given	by:	

• 	To	quanCfy	what	it	means	to	do	well	or	poorly	on	a	task,	we	need	to	
define	a	loss	(error)	funcCon:	

Let	x	2	Rd	denote	a	real-valued	input	vector,	and	t	2	R	denote	a	real-
valued	random	target	(output)	variable	with	joint	the	distribuCon														

• 	If	we	use	squared	loss,	we	obtain:	
Squared	Loss	FuncCon	

• 	If	we	use	squared	loss,	we	obtain:	

• 	Our	goal	is	to	choose	y(x)	so	as	to	minimize	the	expected	squared	loss.		

• 	The	opCmal	soluCon	(if	we	assume	a	completely	flexible	funcCon)	is	the	
condiConal	average:	

The	regression	funcCon	y(x)	that	
minimizes	the	expected	squared	loss	is	
given	by	the	mean	of	the	condiConal	
distribuCon	

Squared	Loss	FuncCon	
• 	If	we	use	squared	loss,	we	obtain:	

• 	Our	goal	is	to	choose	y(x)	so	as	to	minimize	the	expected	squared	loss.		

• 	The	opCmal	soluCon	(if	we	assume	a	completely	flexible	funcCon)	is	the	
condiConal	average:	

The	regression	funcCon	y(x)	that	
minimizes	the	expected	squared	loss	is	
given	by	the	mean	of	the	condiConal	
distribuCon	



Generative v.s. Discriminative Model

• Generative model:
• Model the joint probability
• Make decision according to Bayes theorem

• Discriminative model:
• Directly model the conditional probability 



References

• Chapter 5, Deep Learning Book.


