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Ar4ficial	Intelligence:		
Fourth	Industrial	Revolu4on	



What	is	Ar4ficial	Intelligence?	

“Ar$ficial	intelligence	(AI,	also	machine	intelligence,	MI)	is	intelligence	demonstrated	by	machines,	in	
contrast	to	the	natural	intelligence	(NI)	displayed	by	humans	and	other	animals.	In	computer	science	AI	
research	is	defined	as	the	study	of	"intelligent	agents":	any	device	that	perceives	its	environment	and	
takes	ac$ons	that	maximize	its	chance	of	successfully	achieving	its	goals.	Colloquially,	the	term	
"arCficial	intelligence"	is	applied	when	a	machine	mimics	"cogniCve"	funcCons	that	humans	associate	
with	other	human	minds,	such	as	"learning"	and	"problem	solving".”	

-Wikipedia:	hBps://en.wikipedia.org/wiki/Ar4ficial_intelligence	
	



The	History	of	Ar4ficial	Intelligence	

2012		
Deep	learning	won	
IMAGNET	
	

Deep	neural	networks	are	widely	
adopted,	achieving	or	outperforming	
human	performance	in	a	variety	of		
applicaCons	

Images	from	internet	



Ar4ficial	Intelligence	v.s.	Machine	Learning	
v.s.	Deep	Learning	



Machine	Learning	
•  “Machine	learning	is	a	field	of	computer	science	that	uses	sta4s4cal	techniques	
to	give	computer	systems	the	ability	to	"learn"	(i.e.,	progressively	improve	
performance	on	a	specific	task)	with	data,	without	being	explicitly	programmed.”	

-Wikipedia	

Support	vector	machines	

Hand-craFed		
Feature	Extractor	

Simple	Trainable	Classifier	
e.g.,	SVM,	LR	

Domain	experts	



Deep	Learning	

• Algorithms	that	allow	to	learn	from	features	from	data	(a.k.a,	End-to-
end	learning)	

Deep	Neural	Networks	

Trainable	
Feature	Extractor	

Simple	Trainable	Classifier	
e.g.,	SVM,	LR	

Domain	experts	



Why	Deep	Learning	Now?	

Big	Data	 Big	Model	Big	Computa4on	



Speech	Recogni4on	



Speech	Recogni4on	Results	

(	Figure	from	Microso\’s	speech	Group)	



Image	Recogni4on	



Results	on	ImageNet	

Deep	Learning	



Image	Genera4on	

(Figure	from	Nguyen	et	al.	2016)	(Goodfellow 2016)
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Abstract

Generating high-resolution, photo-realistic images has
been a long-standing goal in machine learning. Recently,
Nguyen et al. [36] showed one interesting way to synthesize
novel images by performing gradient ascent in the latent
space of a generator network to maximize the activations
of one or multiple neurons in a separate classifier network.
In this paper we extend this method by introducing an addi-
tional prior on the latent code, improving both sample qual-
ity and sample diversity, leading to a state-of-the-art gen-
erative model that produces high quality images at higher
resolutions (227 ⇥ 227) than previous generative models,
and does so for all 1000 ImageNet categories. In addition,
we provide a unified probabilistic interpretation of related
activation maximization methods and call the general class
of models “Plug and Play Generative Networks.” PPGNs
are composed of 1) a generator network G that is capable
of drawing a wide range of image types and 2) a replace-
able “condition” network C that tells the generator what
to draw. We demonstrate the generation of images condi-
tioned on a class (when C is an ImageNet or MIT Places
classification network) and also conditioned on a caption
(when C is an image captioning network). Our method also
improves the state of the art of Multifaceted Feature Visual-
ization [39], which generates the set of synthetic inputs that
activate a neuron in order to better understand how deep
neural networks operate. Finally, we show that our model
performs reasonably well at the task of image inpainting.
While image models are used in this paper, the approach is
modality-agnostic and can be applied to many types of data.

1. Introduction

Recent years have seen generative models that are in-
creasingly capable of synthesizing diverse, realistic images

Figure 1: Images synthetically generated by Plug and Play
Generative Networks at high-resolution (227x227) for four
ImageNet classes. Not only are many images nearly photo-
realistic, but samples within a class are diverse.

that capture both the fine-grained details and global coher-
ence of natural images [52, 26, 9, 15, 42, 23]. However,
many important open challenges remain, including (1) pro-
ducing photo-realistic images at high resolutions [29], (2)
training generators that can produce a wide variety of im-
ages (e.g. all 1000 ImageNet classes) instead of only one or
a few types (e.g. faces or bedrooms [42]), and (3) producing
a diversity of samples that match the diversity in the dataset
instead of modeling only a subset of the data distribution
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AlphaGo	

4:1	
vs	Sedol	Lee	
(2016.3)	

3:0	
vs	Ke	Jie	
(2017.5)	



Machine	Transla4on	
•  2016.9,	Google	announce	its	neural	machine	translaCon	system.	
•  2018.3	,	Microso\	claimed	its	NMT	achieved	“human	parity”	on		
						automa4c	Chinese	to	English	news	transla4on.	

(Seq2Seq, Sutskever	et	al.	2014)	



Machine	Reading	Comprehension	
Passage: Tesla later approached Morgan to ask for more funds to build a more powerful transmitter.
When asked where all the money had gone, Tesla responded by saying that he was affected by
the Panic of 1901, which he (Morgan) had caused. Morgan was shocked by the reminder of his part
in the stock market crash and by Tesla’s breach of contract by asking for more funds. Tesla wrote
another plea to Morgan, but it was also fruitless. Morgan still owed Tesla money on the original
agreement, and Tesla had been facing foreclosure even before construction of the tower began.
Question: On what did Tesla blame for the loss of the initial money?
Answer: Panic of 1901

Table 1: An example from the SQuAD dataset.

First, we propose a gated attention-based recurrent network, which adds an additional gate to the
attention-based recurrent networks (Bahdanau et al., 2014; Rocktäschel et al., 2015; Wang & Jiang,
2016a), to account for the fact that words in the passage are of different importance to answer a
particular question for reading comprehension and question answering. In Wang & Jiang (2016a),
words in a passage with their corresponding attention-weighted question context are encoded to-
gether to produce question-aware passage representation. By introducing a gating mechanism, our
gated attention-based recurrent network assigns different levels of importance to passage parts de-
pending on their relevance to the question, masking out irrelevant passage parts and emphasizing
the important ones.

Second, we introduce a self-matching mechanism, which can effectively aggregate evidence from
the whole passage to infer the answer. Through a gated matching layer, the resulting question-aware
passage representation effectively encodes question information for each passage word. However,
recurrent networks can only memorize limited passage context in practice despite its theoretical ca-
pability. One answer candidate is often unaware of the clues in other parts of the passage. To address
this problem, we propose a self-matching layer to dynamically refine passage representation with
information from the whole passage. Based on question-aware passage representation, we employ
gated attention-based recurrent networks on passage against passage itself, aggregating evidence rel-
evant to the current passage word from every word in the passage. A gated attention-based recurrent
network layer and self-matching layer dynamically enrich each passage representation with infor-
mation aggregated from both question and passage, enabling subsequent network to better predict
answers.

Lastly, the proposed method yields state-of-the-art results against strong baselines. Our single model
achieves 72.3% exact match accuracy on the hidden SQuAD test set, while the ensemble model
further boosts the result to 76.9%, which currently1 holds the first place on the SQuAD leaderboard.
Besides, our model also achieves the best published results on MS-MARCO dataset (Nguyen et al.,
2016).

2 TASK DESCRIPTION

For reading comprehension style question answering, a passage P and question Q are given, our task
is to predict an answer A to question Q based on information found in P. The SQuAD dataset further
constrains answer A to be a continuous sub-span of passage P. Answer A often includes non-entities
and can be much longer phrases. This setup challenges us to understand and reason about both the
question and passage in order to infer the answer. Table 1 shows a simple example from the SQuAD
dataset. As for MS-MARCO dataset, several related passages P from Bing Index are provided for
a question Q. Besides, the answer A in MS-MARCO is generated by human which can not be a
continuous sub-span of the passage.

3 R-NET STRUCTURE

Figure 1 gives an overview of R-NET. First, the question and passage are processed by a bi-
directional recurrent network (Mikolov et al., 2010) separately. We then match the question and
passage with gated attention-based recurrent networks, obtaining question-aware representation for

1On May. 6, 2017
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Analyzing	Graphs	
• Represen4ng	graphs	in	low-dimensional	spaces	

•  Node	representa4on,	graph	representa4on	

      	

(LINE,	Tang	et	al.	2015)	 (Gilmer	et	al.	2016)	



Recommender	Systems	

Wide	&	deep	learning	for		
recommender	systems	(Google	2016)	

Workshops	on	Deep	Learning		
for	Recommender	Systems	



This	Course	

• ObjecCves	
•  Understand	the	basic	techniques	of	machine	learning	and	deep	learning	
•  Learn	advanced	topics/latest	progress	of	deep	learning	(selected	topics)	
•  Know	how	to	apply	deep	learning	techniques	to	real-world	applica4ons	

• Prerequisite	
•  Some	basics	of	probability,	sta4s4cs,	and	linear	algebra	
•  No	programming	is	required	



Textbooks	

	Christopher	Bishop.	“PaBern	Recogni4on	and	Machine	
Learning”.	Springer,	2006.	

Ian	Goodfellow,	Yoshua	Bengio	and	Aaron	Courville.	“Deep	
Learning”.	MIT,	2016.	



Online	Resources	

•  Stanford	course:	“CS224d:	Deep	Learning	for	Natural	Language	
Processing”.	hBp://cs224d.stanford.edu/index.html	
•  CMU	course:	“Topics	in	Deep	Learning”	
hBp://www.cs.cmu.edu/~rsalakhu/10807_2016/	
•  Hugo	Larochelle	Neural	Network	Course:
hBp://info.usherbrooke.ca/hlarochelle/neural_networks/descrip4on.html	
•  Deep	learning	summer	school	in	Montreal:	
hBps://sites.google.com/site/deeplearningsummerschool2016/home	
• Many	of	the	slides	and	materials	are	borrowed	from	the	resources	and	
books	



Evalua4on	

• Course	Projects:	
•  Students	should	work	on	course	projects	in	teams	(at	most	4	students).	
•  At	the	end	of	this	course,	each	team	should	make	a	poster	(30%)	and	also	
hand	in	a	project	report	(	70%,	due	in	two	weeks	a\er	the	course	is	finished).	

•  	Course	report	
•  Should	give	a	clear	defini4on	of	the	problem	(10%)	
•  A	detailed	survey	of	the	problem	(25%)	
•  A	proposal	(35%)	
•  Some	preliminary	results	(not	required,	+	10	%)	
•  Five	pages	in	total	(NIPS	format,	English)	



Course	Outline	

•  Introduc4on	&	Mathema4cs		(Day	1)	
• Machine	Learning	Basics	(Day	2	)	
•  Feedforward	Neural	Networks	&	Op4miza4on	Tricks		(Day	3)	
• Convolu4onal	Neural	Networks	(Day	4)	
• Recurrent	Neural	Networks	(Day	4)	
• Deep	Learning	for	Natural	Language	Understanding	(Day	5)	
• Graph	Representa4on	Learning	&	Recommenda4on	(Day	6)	
• Poster	Session	(Day	6)	



Thanks!	


