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A huge amount of text data …

Traditional media Social media Electronic Health Records
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Topic classification Sentiment classification



Document Clustering



Information Retrieval



Question Answering

Passage: Tesla later approached Morgan to ask for more funds to build a more powerful transmitter.
When asked where all the money had gone, Tesla responded by saying that he was affected by

the Panic of 1901, which he (Morgan) had caused. Morgan was shocked by the reminder of his part
in the stock market crash and by Tesla’s breach of contract by asking for more funds. Tesla wrote
another plea to Morgan, but it was also fruitless. Morgan still owed Tesla money on the original
agreement, and Tesla had been facing foreclosure even before construction of the tower began.
Question: On what did Tesla blame for the loss of the initial money?
Answer: Panic of 1901

Table 1: An example from the SQuAD dataset.

First, we propose a gated attention-based recurrent network, which adds an additional gate to the
attention-based recurrent networks (Bahdanau et al., 2014; Rocktäschel et al., 2015; Wang & Jiang,
2016a), to account for the fact that words in the passage are of different importance to answer a
particular question for reading comprehension and question answering. In Wang & Jiang (2016a),
words in a passage with their corresponding attention-weighted question context are encoded to-
gether to produce question-aware passage representation. By introducing a gating mechanism, our
gated attention-based recurrent network assigns different levels of importance to passage parts de-
pending on their relevance to the question, masking out irrelevant passage parts and emphasizing
the important ones.

Second, we introduce a self-matching mechanism, which can effectively aggregate evidence from
the whole passage to infer the answer. Through a gated matching layer, the resulting question-aware
passage representation effectively encodes question information for each passage word. However,
recurrent networks can only memorize limited passage context in practice despite its theoretical ca-
pability. One answer candidate is often unaware of the clues in other parts of the passage. To address
this problem, we propose a self-matching layer to dynamically refine passage representation with
information from the whole passage. Based on question-aware passage representation, we employ
gated attention-based recurrent networks on passage against passage itself, aggregating evidence rel-
evant to the current passage word from every word in the passage. A gated attention-based recurrent
network layer and self-matching layer dynamically enrich each passage representation with infor-
mation aggregated from both question and passage, enabling subsequent network to better predict
answers.

Lastly, the proposed method yields state-of-the-art results against strong baselines. Our single model
achieves 72.3% exact match accuracy on the hidden SQuAD test set, while the ensemble model
further boosts the result to 76.9%, which currently1 holds the first place on the SQuAD leaderboard.
Besides, our model also achieves the best published results on MS-MARCO dataset (Nguyen et al.,
2016).

2 TASK DESCRIPTION

For reading comprehension style question answering, a passage P and question Q are given, our task
is to predict an answer A to question Q based on information found in P. The SQuAD dataset further
constrains answer A to be a continuous sub-span of passage P. Answer A often includes non-entities
and can be much longer phrases. This setup challenges us to understand and reason about both the
question and passage in order to infer the answer. Table 1 shows a simple example from the SQuAD
dataset. As for MS-MARCO dataset, several related passages P from Bing Index are provided for
a question Q. Besides, the answer A in MS-MARCO is generated by human which can not be a
continuous sub-span of the passage.

3 R-NET STRUCTURE

Figure 1 gives an overview of R-NET. First, the question and passage are processed by a bi-
directional recurrent network (Mikolov et al., 2010) separately. We then match the question and
passage with gated attention-based recurrent networks, obtaining question-aware representation for

1On May. 6, 2017
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Text Summarization
Sentence Summarization

Source

Russian Defense Minister Ivanov called Sunday for the creation of a joint

front for combating global terrorism.

Target

Russia calls for joint front against terrorism.

Summarization Phenomena:

Generalization

Deletion

Paraphrase

Rush, Chopra, Weston (Facebook AI) Neural Abstractive Summarization 2 / 42
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Classical Word Representations

• Words as atomic symbols:  “One-hot” representation
• Documents: “Bag-of-words”

“network” = [0,1,0,0,0,0,0]
“networks” = [0,0,0,0,1,0,0] 0

AND

• Ignore the semantic relatedness between words
• The curse of dimensionality

• As large as millions in a large text corpus.



Neural Word Embeddings (Bengio et al. 2003)

• Represent each word with a continuous dense vector
• Hundreds and thousands of dimensions 
• Words with similar meanings are represented with similar vectors

• Represent phrases, sentences and documents through word 
embedding



Distributional Hypothesis

• “You shall know a word by the company it keeps” (J.R. Firth 1957:11)
• The meaning of a word can be represented by its neighbors

A telecommunications network allows computers to exchange data
In information technology, a network is a series of points or nodes interconnected...

Represent “network” with the neighboring words



Word2VEC (Mikolov et al. 2013)

INPUT PROJECTION OUTPUT

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

• Skip-gram: finding word representations that are useful for predicting the surrounding words in 
a sentence or a document

A telecommunications network allows computers to exchange data



Objective of Skip-gram

INPUT PROJECTION OUTPUT

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

• Given a sequence of training words !"!#,… ,!&, the 
objective of the skip-gram is to maximize the average log 
probability: 

• Where c is the size of the training context. '(!)*+|!)) is 
defined with a softmax function

• Where ./ and ./0 are the “input” and “output” vector 
representations of w. W is the vocabulary size.
• Calculating ' !)*+ !) is very computational expensive 

1
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Hierarchical Softmax (Morin and Bengio
2005)
• Use a binary tree representation of the output layer with the W words as its 

leaves.
• Each word w can be reached with a path from the root node to the word
• n(w,j): the j-th node on the path from root to w
• L(w): the length of the path
• The hierarchical softmax defines the ! "# "$ as:

• % & = 1/(1 + exp(−&)) , & be 1 if x is true and -1 otherwise
• Computational complexity: log W 



Negative Sampling (Mikolov et al. 2013)

• Modify the objective as:

• It aims to distinguish the target word !" from draws from the noise distribution 
#$(!) using logistic regression. k is the number of negative samples for each 
input word (k is usually 5-20).
• #$(!) is usually set as the unigram distribution U(!) raised to the 3/4rd power, 

i.e.,  
#$ ! = ( ! ).+,/.



CBOW (Mikolov et al. 2013)

• Instead of using center words to predict nearby words, using nearby 
words to predict the center words
• Calculating the context embedding

• Predict the center word:

INPUT PROJECTION OUTPUT

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)! "# "#$%, … , "#$(, "#)(, . . , "#)% = exp(0123
40%)

∑17(8 exp(013 40%)

0% =
1
2; <

$%=>=%,>?@
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Word Analogy

• Find a word that is similar to small in the same sense as biggest is 
similar to big.
• Compute vector X=vector(“biggest”)-vector(“big”) + vector(“small”)
• Then search the vector space for the word closest to X measured by 

cosine distance, and use it as the answer. 



Examples
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Unsupervised Sentence Representation: 
Paragraph Vector (Le et al. 2014)
• CBOW: using context words => predict center word
• PV-DM: (context words + paragraph id) => predict center word
• PV-BOW: paragraph id => each word in the sentence

CBOW PV-DM PV-BOW



Skip-thoughts (Kiros et al. 2015)

• Given a tuple !"#$, !", !"&$ of continuous sentences in a book, with 
!" is the i-th sentence of the book. The sentence !" is encoded with a 
RNN and tries to reconstruct the previous sentence !"#$ and next 
sentence !"&$ with another RNN



CNN for Sentence Representation (Kim 2013)

• Words are represented as word embeddings
• Multiple feature maps with different widths (modeling different n-
grams)

Convolutional Neural Networks for Sentence Classification

Classification

Convolutional Neural Networks

How well can we do with a simple CNN?

Collobert-Weston style CNN with pre-trained embeddings from
word2vec

19 / 34



Different Variants of CNN

• CNN-rand: the word embeddings are randomly initialized
• CNN-static: the word embeddings are initialized by Word2VEC and
fixed during training
• CNN-nonstatic: fine tuning the word embeddings by Word2VEC



Results on Sentiment Classification

Convolutional Neural Networks for Sentence Classification

Experiments

Model 2: Fine-tune embeddings for each task
(CNN-nonstatic)

Data Prev SotA CNN-rand CNN-static CNN-nonstatic
MR 79.5 76.1 81.0 81.5

SST-1 48.7 45.0 45.5 48.0
SST-2 87.8 82.7 86.8 87.2
Subj 93.6 89.6 93.0 93.4
TREC 95.0 91.2 92.8 93.6
CR 82.7 79.8 84.7 84.3

MPQA 87.2 83.4 89.6 89.5

I Fine-tuning vectors helps, though not that much.

I Perhaps our embeddings are overfitting (given the relatively
small training sample)?

26 / 34



Multi-channel CNN

• Two “channels” of embeddings
• One is allowed to change,and the other is fixed
• Both initialized with Word2VEC

Convolutional Neural Networks for Sentence Classification

Experiments

Model 3: Multi-channel CNN

I Two “channels” of embeddings (i.e. look-up tables).
I One is allowed to change, while one is kept fixed.
I Both initialized with word2vec.

27 / 34



Results on Sentiment Classification (Cont’)

Convolutional Neural Networks for Sentence Classification

Experiments

Model 3 performance is mixed

Data Prev SotA CNN-nonstatic CNN-multichannel
MR 79.5 81.5 81.1

SST-1 48.7 48.0 47.4
SST-2 87.8 87.2 88.1
Subj 93.6 93.4 93.2
TREC 95.0 93.6 92.2
CR 82.7 84.3 85.0

MPQA 87.2 89.5 89.4

I Performance is not statistically di↵erent from CNN-nonstatic.

28 / 34

The performance are mixed



Fine-tuned Word Embeddings

Convolutional Neural Networks for Sentence Classification

Experiments

Fine-tuned embeddings (on SST)

Most Similar Words for
Static Non-static

bad

good terrible

terrible horrible

horrible lousy

lousy stupid

good

great nice

bad decent

terrific solid

decent terrific

I good and bad are similar to each
other in original word2vec because
interchanging them will still result
in a grammatically correct
sentence.

I The model learns to discriminate
adjectival scales.

I sim(good, nice) > sim(good,
great)

29 / 34



Tree-Structured LSTM for Sentence 
Representation 
• Representing sentences as trees instead of linear chains
• Leverage different types of dependency structures between words

Source from internet



Tree-LSTM

• A generalization of LSTMs to tree-structured network topologies 

Linear-chain LSTM Tree-structure LSTM



Child-Sum Tree-LSTMs

• Well suited for trees with high branching factor or whose children are unordered
• Good choice for dependency trees, where the number of children of a head can be 

highly variable
• Referred to as Dependency Tree-LSTM

Input gate of node j

Forget gate of child k of node j
Output gate of node j

Input of node j

memory of node j

Output of node j

Information from the children
of node j



N-ary Tree-LSTM

• Good for tree structures where the branching factor is at most N and 
where the children are ordered
• Constituency Tree-LSTM

Input gate of node j

Forget gate of child k of node j

Output gate of node j

Input of node j

memory of node j

Output of node j



Task : Tree-LSTM Sentiment Classification

• Predict the labels for a subset of nodes in a tree
• Output layer for each node:

• Lost function:



Experiments: Sentiment Classification

Table: Results on the Stanford Sentiment Treebank
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Neural Machine Translation



Sequence2Sequence (Encoder-Decoder)
(QFRGHU�'HFRGHU�$SSURDFK
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Results on Machine Translation

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

−8 −6 −4 −2 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

3

4

John respects Mary

Mary respects John
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Mary is in love with John

John is in love with Mary
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I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the
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Table: Results from English to French

• Both encoder and decoder are RNNs



RNN Encoder-Decoder Issues511�(QFRGHU�'HFRGHU��,VVXHV
Ɣ KDV�WR�UHPHPEHU�WKH�ZKROH�VHQWHQFH

Ɣ IL[HG�VL]H�UHSUHVHQWDWLRQ�FDQ�EH�WKH�ERWWOHQHFN
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ORQJ�VHQWHQFHV�



Attention-based Encoder-Decoder
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New Encoder1HZ�(QFRGHU
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New Decoder1HZ�'HFRGHU
6WHS�L�
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Alignment Model$OLJQPHQW�0RGHO

Ɣ QRQOLQHDULW\��WDQK��LV�FUXFLDO�
Ɣ VLPSOHVW�PRGHO�SRVVLEOH
Ɣ ��������LV�SUHFRPSXWHG� !�

TXDGUDWLF�FRPSOH[LW\�ZLWK�ORZ�
FRQVWDQW

���

���

Calculate context:

Published as a conference paper at ICLR 2015

The decoder is often trained to predict the next word yt0 given the context vector c and all the
previously predicted words {y1, · · · , yt0�1}. In other words, the decoder defines a probability over
the translation y by decomposing the joint probability into the ordered conditionals:

p(y) =
TY

t=1

p(yt | {y1, · · · , yt�1} , c), (2)

where y =
�
y1, · · · , yTy

�
. With an RNN, each conditional probability is modeled as

p(yt | {y1, · · · , yt�1} , c) = g(yt�1, st, c), (3)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yt, and st is
the hidden state of the RNN. It should be noted that other architectures such as a hybrid of an RNN
and a de-convolutional neural network can be used (Kalchbrenner and Blunsom, 2013).

3 LEARNING TO ALIGN AND TRANSLATE

In this section, we propose a novel architecture for neural machine translation. The new architecture
consists of a bidirectional RNN as an encoder (Sec. 3.2) and a decoder that emulates searching
through a source sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the t-th tar-
get word yt given a source
sentence (x1, x2, . . . , xT ).

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi�1,x) = g(yi�1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si�1, yi�1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =
TxX

j=1

↵ijhj . (5)

The weight ↵ij of each annotation hj is computed by

↵ij =
exp (eij)PTx

k=1 exp (eik)
, (6)

where
eij = a(si�1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si�1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,
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Output model$OLJQPHQW�0RGHO
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The decoder is often trained to predict the next word yt0 given the context vector c and all the
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In this section, we propose a novel architecture for neural machine translation. The new architecture
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through a source sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION
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get word yt given a source
sentence (x1, x2, . . . , xT ).

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi�1,x) = g(yi�1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si�1, yi�1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =
TxX

j=1

↵ijhj . (5)

The weight ↵ij of each annotation hj is computed by

↵ij =
exp (eij)PTx

k=1 exp (eik)
, (6)

where
eij = a(si�1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si�1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,
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In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi�1,x) = g(yi�1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si�1, yi�1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =
TxX

j=1

↵ijhj . (5)

The weight ↵ij of each annotation hj is computed by

↵ij =
exp (eij)PTx

k=1 exp (eik)
, (6)

where
eij = a(si�1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si�1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,
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Architecture: Fully connected + Maxout
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The decoder is often trained to predict the next word yt0 given the context vector c and all the
previously predicted words {y1, · · · , yt0�1}. In other words, the decoder defines a probability over
the translation y by decomposing the joint probability into the ordered conditionals:

p(y) =
TY

t=1

p(yt | {y1, · · · , yt�1} , c), (2)

where y =
�
y1, · · · , yTy

�
. With an RNN, each conditional probability is modeled as

p(yt | {y1, · · · , yt�1} , c) = g(yt�1, st, c), (3)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yt, and st is
the hidden state of the RNN. It should be noted that other architectures such as a hybrid of an RNN
and a de-convolutional neural network can be used (Kalchbrenner and Blunsom, 2013).

3 LEARNING TO ALIGN AND TRANSLATE

In this section, we propose a novel architecture for neural machine translation. The new architecture
consists of a bidirectional RNN as an encoder (Sec. 3.2) and a decoder that emulates searching
through a source sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the t-th tar-
get word yt given a source
sentence (x1, x2, . . . , xT ).

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi�1,x) = g(yi�1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si�1, yi�1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =
TxX

j=1

↵ijhj . (5)

The weight ↵ij of each annotation hj is computed by

↵ij =
exp (eij)PTx

k=1 exp (eik)
, (6)

where
eij = a(si�1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si�1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,
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Attention is all you need (Vaswani et al. 2017)

• Most existing models for neural machine translation
• RNN or CNN for encoder and decoder
• Attention is used  to connect encoder and decoder

• The Transformer (Vaswani et al. 2017)
• Only attention is used
• Parallelizable



Encoder

• A stack of N=6 identical layers
• Each layer are composed of two sublayers
• Multi-head self-head attention
• Position-wise fully connected feed-forward 

network
• Residual connection followed by 

normalization are used in both sublayers
• !"#$%&'%((* + ,-./"#$% * )



Multi-head Attention

• Attention
• Mapping a query and a set of key-value pairs to an output
• Query, Keys, and Values are all vectors
• The output is a weighted sum of the values, with the weights calculated 

according to a softmax function depending on the similarities between 
queries and keys



Multi-head Attention

• Scaled Dot-Product Attention
• Avoiding pushing the softmax function into regions 

where it has extremely small gradients.

d_k: dimension of keys and queries



Multi-head Attention

• Multi-head Attention
• Linearly project the queries, keys, and values h times 

with different, learned linear projects respectively
• Concatenate the outputs and project again



Position-wise Feed-Forward Network

• Applied to each position separately and identically
• Two linear transformations with RELU as the activation in between
• Different parameters are used across different layers 



Positional Encoding
• Without recurrence and convolution, the order information is lost
• Need to encode the relative or absolute position of the tokens in the 

sequence
• Position encodings are added to both the embeddings of the tokens 

in both encoder and decoder
• Sine and cosine functions of different frequencies are used:

• Pos is the position and i is the dimension



Decoder

• N=6 identical layers
• Each layer
• Masked multi-head attention
• Position-wise fully connected feed-forward 

network
• Multi-head attention over the output of the 

encoder stack
• Residual connection followed by 

normalization are used in all the three 
sublayers



Discussion: advantages of Self-Attention

• Complexity
• Short-range v.s. long-range dependency
• Interpretability



Results



Outline

• Word Representation
• Word2vec

• Sentence Representation
• ParagraphVec
• Skip-thought 
• CNN
• LSTM & Tree-LSTM

• Machine Translation
• Encoder-decoder
• Attention-based encoder-decoder
• Attention is all you need

• Question Answering
• Memory Network
• QANet



bAbi Dataset by Facebook

• 20 tasks for text understanding and reasoning
• Context sentences
• Question
• Answer



End-to-End Memory Network (Architecture)

2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
size d⇥V ). The query q is also embedded (again, in the simplest case via another embedding matrix
B with the same dimensions as A) to obtain an internal state u. In the embedding space, we compute
the match between u and each memory mi by taking the inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the transformed inputs ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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â

u

u
Inner Product

O
ut3 In

3 

B

Sentences

 

W
 
â
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k

(different ways to combine o
k and u

k are proposed later):

u
k+1 = u

k + o
k
. (4)
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Input Memory Representations

• Suppose we are given an input set x1, x2, ..., xi to be stored in
memory
• Convert each !" to a d-dimensional vector#" (e.g., with an
embedding matrix $ ∈ &' ( ))
• The query q is also embedded (e.g., with another embedding matrix
B) as the internal state u.
• Calculate the attention according to

2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
size d⇥V ). The query q is also embedded (again, in the simplest case via another embedding matrix
B with the same dimensions as A) to obtain an internal state u. In the embedding space, we compute
the match between u and each memory mi by taking the inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the transformed inputs ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k

(different ways to combine o
k and u

k are proposed later):

u
k+1 = u

k + o
k
. (4)
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Output memory representations

• Each x_i has a corresponding output vector c_i (with another
embedding matrix C).
• The response vector from the memory o:

2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
size d⇥V ). The query q is also embedded (again, in the simplest case via another embedding matrix
B with the same dimensions as A) to obtain an internal state u. In the embedding space, we compute
the match between u and each memory mi by taking the inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the transformed inputs ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k

(different ways to combine o
k and u

k are proposed later):

u
k+1 = u

k + o
k
. (4)
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Generating the final prediction

• The sum of the output vector o and the input embedding u is then
passed through a final weight matrix W (of size V x d) and a softmax
to produce the predicted label:

2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
size d⇥V ). The query q is also embedded (again, in the simplest case via another embedding matrix
B with the same dimensions as A) to obtain an internal state u. In the embedding space, we compute
the match between u and each memory mi by taking the inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the transformed inputs ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k

(different ways to combine o
k and u

k are proposed later):

u
k+1 = u

k + o
k
. (4)
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Multiple Layers:

• The input to layers above the first is the sum of output !" and the
input #" from layer k:

• Each layer has its own embedding matrices $", &"

2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
size d⇥V ). The query q is also embedded (again, in the simplest case via another embedding matrix
B with the same dimensions as A) to obtain an internal state u. In the embedding space, we compute
the match between u and each memory mi by taking the inner product followed by a softmax:

pi = Softmax(uT
mi). (1)

where Softmax(zi) = e
zi/

P
j e

zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the transformed inputs ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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â

u

u
Inner Product

O
ut3 In

3 

B

Sentences

 

W
 
â
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k

(different ways to combine o
k and u

k are proposed later):

u
k+1 = u

k + o
k
. (4)
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bAbi Results



bAbi Results

• p



Language Model

• Adaptation to LM
• Inputs are words, not sentences
• Question ! is assumed to have constant embeddings (0.1)
• Output softmax is applied to the whole dictionary

• Layer-wise weight sharing



Results



SQUAD (Rajpurkar et al. 2016)
• 500 Wikipedia articles, 20k paragraphs
• The questions and answers are collected by crowdsourcing
• Given a paragraph, the workers are required to return 5 questions and 

answers
• Each answer is a span in the given paragraph
• 100k questions in total, covering a wide range of topics

Passage: Tesla later approached Morgan to ask for more funds to build a more powerful transmitter.
When asked where all the money had gone, Tesla responded by saying that he was affected by

the Panic of 1901, which he (Morgan) had caused. Morgan was shocked by the reminder of his part
in the stock market crash and by Tesla’s breach of contract by asking for more funds. Tesla wrote
another plea to Morgan, but it was also fruitless. Morgan still owed Tesla money on the original
agreement, and Tesla had been facing foreclosure even before construction of the tower began.
Question: On what did Tesla blame for the loss of the initial money?
Answer: Panic of 1901

Table 1: An example from the SQuAD dataset.

First, we propose a gated attention-based recurrent network, which adds an additional gate to the
attention-based recurrent networks (Bahdanau et al., 2014; Rocktäschel et al., 2015; Wang & Jiang,
2016a), to account for the fact that words in the passage are of different importance to answer a
particular question for reading comprehension and question answering. In Wang & Jiang (2016a),
words in a passage with their corresponding attention-weighted question context are encoded to-
gether to produce question-aware passage representation. By introducing a gating mechanism, our
gated attention-based recurrent network assigns different levels of importance to passage parts de-
pending on their relevance to the question, masking out irrelevant passage parts and emphasizing
the important ones.

Second, we introduce a self-matching mechanism, which can effectively aggregate evidence from
the whole passage to infer the answer. Through a gated matching layer, the resulting question-aware
passage representation effectively encodes question information for each passage word. However,
recurrent networks can only memorize limited passage context in practice despite its theoretical ca-
pability. One answer candidate is often unaware of the clues in other parts of the passage. To address
this problem, we propose a self-matching layer to dynamically refine passage representation with
information from the whole passage. Based on question-aware passage representation, we employ
gated attention-based recurrent networks on passage against passage itself, aggregating evidence rel-
evant to the current passage word from every word in the passage. A gated attention-based recurrent
network layer and self-matching layer dynamically enrich each passage representation with infor-
mation aggregated from both question and passage, enabling subsequent network to better predict
answers.

Lastly, the proposed method yields state-of-the-art results against strong baselines. Our single model
achieves 72.3% exact match accuracy on the hidden SQuAD test set, while the ensemble model
further boosts the result to 76.9%, which currently1 holds the first place on the SQuAD leaderboard.
Besides, our model also achieves the best published results on MS-MARCO dataset (Nguyen et al.,
2016).

2 TASK DESCRIPTION

For reading comprehension style question answering, a passage P and question Q are given, our task
is to predict an answer A to question Q based on information found in P. The SQuAD dataset further
constrains answer A to be a continuous sub-span of passage P. Answer A often includes non-entities
and can be much longer phrases. This setup challenges us to understand and reason about both the
question and passage in order to infer the answer. Table 1 shows a simple example from the SQuAD
dataset. As for MS-MARCO dataset, several related passages P from Bing Index are provided for
a question Q. Besides, the answer A in MS-MARCO is generated by human which can not be a
continuous sub-span of the passage.

3 R-NET STRUCTURE

Figure 1 gives an overview of R-NET. First, the question and passage are processed by a bi-
directional recurrent network (Mikolov et al., 2010) separately. We then match the question and
passage with gated attention-based recurrent networks, obtaining question-aware representation for

1On May. 6, 2017
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Different Types of Questions and Answers





Baselines
• candidate answer + sentence lexical feature



The current Leaderboard (2018.06.07)



QANet (Yu et al. 2018)

• Most existing models for question answering
• RNN are used for encoding the paragraphs and queries
• Slow for both training and inference

• A new encoder
• Convolution: model local interaction
• Self-attention: model global interaction





Input Embedding Layer

• Word embedding: concatenating word embedding and character 
embedding
• Fixed word embedding during training and initialized with pre-trained Glove 

vector
• All the out-of-vocabulary words are mapped to <UNK> with trainable 

embedding
• CNN on character embeddings



Embedding Encoder Layer

• [convolution-layer x # + self-attention-layer + 
feed-forward-layer]
• Similar to the Transformer



Context-Query Attention Layer

• Denote the encoded context and query as C and Q
• Construct a similarity matrix ! ∈ #$%& between 

each pair of words in the context and query
• The similarity function: 
• '( is trainable

• Normalize each row of S by applying the softmax
function, yielding the matrix ̅!.
• Context-to-query attention A = ̅!-. ∈ #$%/
• Query-to-context attention B = ̅! ̅̅!.1. ∈ #$%/

• ̅̅! column normalized matrix of S by softmax function



Model Encoder Layer

• The input at each position is !, #, ! ⊙ #, ! ⊙ % , where a and b are a 
respectively a row of attention matrix A and B. 
• Apply 3 layers of encoder block



Output Layer

• Predict the probability of each position in the context being the start 
or end of an answer span. The probability of the starting and ending 
position are modeled as:

• Where W1 and W2 are two trainable variables, and M0, M1, M2 are 
respectively the outputs of the three model encoders from bottom to 
top.
• The final objective function:



Inference

• The predicted span (s,e) is chosen such that !"#!$% is maximized and 
& ≤ (. Standard dynamic programming can be used with linear time 
complexity



Data Augmentation with Machine Translation 

• Obtain paraphrases with machine translation models
• One from English to French, and another from French to English



Results on SQUAD



Summary

• Embedding
• Word, sentence, and document embedding

• Key techniques
• CNN
• RNN
• Attention
• Self-Attention



Thanks!


