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Document (Sentence) Classification
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Information Retrieval
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L'apprentissage profond (en anglais deep learning, deep
structured learning, hierarchical learning) est un
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tentant de modéliser avec un haut niveau d'abstraction des
données grace a des architectures articulées de différentes
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Question Answering

Passage: Tesla later approached Morgan to ask for more funds to build a more powerful transmitter.
When asked where all the money had gone, Tesla responded by saying that he was affected by
the Panic of 1901, which he (Morgan) had caused. Morgan was shocked by the reminder of his part
in the stock market crash and by Tesla’s breach of contract by asking for more funds. Tesla wrote
another plea to Morgan, but it was also fruitless. Morgan still owed Tesla money on the original
agreement, and Tesla had been facing foreclosure even before construction of the tower began.

Question: On what did Tesla blame for the loss of the initial money?
Answer: Panic of 1901




Text Summarization

Russian Defense Minister Ivanov called Sunday for the creation of a joint
front for combating global terrorism.

!

Russia calls for joint front against terrorism.



Machine Translation
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Outline

Word Representation
* Word2vec

* Sentence Representation
e ParagraphVec
» Skip-thought
* CNN
* LSTM & Tree-LSTM

Machine Translation
* Encoder-decoder
* Attention-based encoder-decoder
e Attention is all you need

Question Answering

* Memory Network
* QANet



Classical Word Representations

* Words as atomic symbols: “One-hot” representation

* Documents: “Bag-of-words”

“network” =

“networks” =

0,1,0,0,0,0,0

:OIOIOIOI 11010:

AND

* Ignore the semantic relatedness between words

* The curse of dimensionality
* As large as millions in a large text corpus.
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Neural Word Embeddings (Bengio et al. 2003)

* Represent each word with a continuous dense vector
* Hundreds and thousands of dimensions
* Words with similar meanings are represented with similar vectors

* Represent phrases, sentences and documents through word
embedding

dals’ = i

fraining class
: examples feature
supervised . features

“learning  seotien s

mact

PO based cots
AMEWO approach
hod XPENMTENS,.

algonthm methods show

C-:-f‘.‘ C‘( na nce
classifier 9% "_‘"~ )
classification



Distributional Hypothesis

* “You shall know a word by the company it keeps” (J.R. Firth 1957:11)
* The meaning of a word can be represented by its neighbors

A telecommunications network allows computers to exchange data
In information technology, a network is a series of points or nodes interconnected...

N 4

Represent “network” with the neighboring words



Word2VEC (Mikolov et al. 2013)

* Skip-gram: finding word representations that are useful for predicting the surrounding words in
a sentence or a document

A telecommunications network allows computers to exchange data

INPUT PROJECTION OUTPUT
w(t-2)

w(t) w(t-1)

w(t+1)

w(t+2)



Objective of Skip-gram

* Given a sequence of training words wyw,, ..., wr, the

objective of the skip-gram is to maximize the average log

probability:

T
Y logpQweswe)

t=1—-c<j=<c,j#0

* Where c is the size of the training context. p(w¢,j[w;) is
defined with a softmax function

T
exp(Vw, Vw,)

T
Yw=1exp(1y Vw,)

p(Wt+j|Wt) =

* Where v,, and v,, are the “input” and “output” vector
representations of w. W is the vocabulary size.

e Calculating p(WH]- |Wt) is very computational expensive

INPUT PROJECTION OUTPUT
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Hierarchical Softmax (Morin and Bengio
2005)

* Use a binary tree representation of the output layer with the W words as its
leaves.

Each word w can be reached with a path from the root node to the word

n(w,j): the j-th node on the path from root to w
L(w): the length of the path

The hierarchical softmax defines the p(wg|w;) as:

L{w)=—1

!;{“J|H'f} = H a ([[H{i’f-‘.j + l} = Ch{i’?{”'.j}}]] . l”:”"”,‘j],—rf‘n',r)

j=1

o(x) =1/(1 + exp(—x)), [x] be 1if x is true and -1 otherwise

Computational complexity: log W

n(w,,1)
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Negative Sampling (Mikolov et al. 2013)

* Modify the objective as:
— I'{ll
log :‘T[i";,u Vw; ) + Z Ew. P, (w) [lng rr[—p-:[_l Tr'“.f }}

1=1

* It aims to distinguish the target word w, from draws from the noise distribution
P, (w) using logistic regression. k is the number of negative samples for each
input word (k is usually 5-20).

* B,(w) is usually set as the unigram distribution U(w) raised to the 3/4rd power,
l.e.,

B(w) =UW)?7>/Z



CBOW (Mikolov et al. 2013)

* Instead of using center words to predict nearby words, using nearby

words to predict the center words
* Calculating the context embedding

—c<j<c,j#0

* Predict the center word:

T
exp (U, Vc)

PWe We_g, oo, Weiq, Weg, o, Weye) = W T
D=1 €xXp(Wy, V)

INPUT PROJECTION OUTPUT




Word Analogy

* Find a word that is similar to small in the same sense as biggest is
similar to big.

« Compute vector X=vector(“biggest”)-vector(“big”) + vector(“small”)

* Then search the vector space for the word closest to X measured by
cosine distance, and use it as the answer.
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* CBOW: using context words => predict center word

e PV-DM: (context words + paragraph id) => predict center word

* PV-BOW: paragraph id => each word in the sentence

Classifier

Average/Concatenate 0T
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Jnsupervised Sentence Representation:
Paragraph Vector (Le et al. 2014)
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Skip-thoughts (Kiros et al. 2015)

* Given a tuple (s;_1, 5;, S;+1) of continuous sentences in a book, with
s; is the i-th sentence of the book. The sentence s; is encoded with a
RNN and tries to reconstruct the previous sentence s;_; and next
sentence s;, ¢ with another RNN

Oo—0 »O—»0 »O »O »O—>»0




CNN for Sentence Representation (Kim 2013)

 Words are represented as word embeddings

 Multiple feature maps with different widths (modeling different n-

grams)
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Different Variants of CNN

* CNN-rand: the word embeddings are randomly initialized

* CNN-static: the word embeddings are initialized by Word2VEC and
fixed during training

* CNN-nonstatic: fine tuning the word embeddings by Word2VEC



Results on Sentiment Classification

Data Prev SotA | CNN-rand | CNN-static | CNN-nonstatic
MR 79.5 76.1 81.0 81.5
SST-1 48.7 45.0 45.5 48.0
SST-2 87.8 82.7 86.8 87.2
Sub] 03.6 89.6 03.0 03.4
TREC 05.0 01.2 02.8 03.6
CR 82.7 79.8 84.7 84.3
MPQA 87.2 83.4 89.6 89.5




Multi-channel CNN

* Two “channels” of embeddings
* One is allowed to change,and the other is fixed
* Both initialized with Word2VEC
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n X k representation of Convolutional layer with Max-over-time Fully connected layer
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Results on Sentiment Classification (Cont’)

Data Prev SotA | CNN-nonstatic | CNN-multichannel
MR 79.5 81.5 81.1
SST-1 48.7 48.0 47 .4
SST-2 87.8 87.2 88.1
Subj 03.6 03.4 03.2
TREC 05.0 03.6 02.2
CR 82.7 84.3 85.0
MPQA 87.2 89.5 89.4

The performance are mixed



Fine-tuned Word Embeddings

Most Similar Words for

Static Non-static

good terrible

bad terrible horrible
horrible lousy

lousy stupid
great nice

g0od bad decent
terrific solid

decent terrific




Tree-Structured LSTM for Sentence

Representation

* Representing sentences as trees instead of linear chains

* Leverage different types of dependency structures between words

Fruit flies like a banana

Constituency Structure

S

N

NP VP

/\
Adj Noun Vb/\Np
|

Fruit  Flies li/Le Det Noun

a banana

Dependency Structure
like

flies banana

Fruit a

Source from internet



Tree-LSTM

* A generalization of LSTMs to tree-

n Y2 Y3 Y4
I £9 I3 Ly

Linear-chain LSTM

structured network topologies
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Tree-structure LSTM



Child-Sum Tree-LSTMs

Information from the children 7, = Z hi. (2) " ﬁ s
of node j keC(j / 71 \[ %
Input gate Of nOdej "I_-j = (T (H_ (2) ..f‘_],' -+ {'{j]f!j -+ FJ{?.}) . {3] m ”J’ /’
Forget gate of child k of nodej /fik=0c (”'{f)-"; + Uy + "*('f}) , 4) ‘P + +
Iy £y €I
Output gate of node | 0 = (H zj+ Uh, +h‘"—”) . (5)
Input of node j uj :mnh(H'{”J.rj+=’"1”J?aj+h“‘-’). (6)
memory of nOdej Cj = fj 2 wg + Z f?.:_ . (7)
keC(j)
Output of node j hj = oj © tanh(c;), (8)

* Well suited for trees with high branching factor or whose children are unordered

* Good choice for dependency trees, where the number of children of a head can be
highly variable
* Referred to as Dependency Tree-LSTM



N-ary Tree-LSTM

Input gate of node | ij=o0 (“ rj +Zi hj +b‘”) )
Forget gate of child k of nodej /ik=7 ( zj + Zf D hje +hf“) .
(10)

Output gate of node j

N
0j =0 (”"“J-r,f +3 U7 hje + hﬂ““) . (1)
=1

N
Input of node J uj = tanh (II—(”}J'J' + Z E—f")hﬂ + h(nl) )
=1
(12)
. N
memory of node j ¢ =ijoui+ 3 fie®cje (13)
£=1
Output of node j hj = 0j © tanh(c;), (14)

* Good for tree structures where the branching factor is at most N and

where the children are ordered
* Constituency Tree-LSTM

3

| : | If
=3 }
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Task : Tree-LSTM Sentiment Classification

e Predict the labels for a subset of nodes in a tree

e Qutput layer for each node: fﬂ
pe(y | {x};) = softmax (ﬂ*{‘q}hj— + h{“}) : N fl “ "
J; = arg max i r}i). 4 ya Y6
| y; = argmaxpy (y | {};) LA /E‘[i\ \
* Lost function: Bt [ e
4 €Ly ]

1 s ) 1 \ :\ .
J(0) = Zlﬂgf’ﬂ(ﬂm ‘ {-f'}{“) + 51613



Experiments: Sentiment Classification

Method Fine-grained Binary
RAE (Socher et al., 2013) 43.2 824
MV-RNN (Socher et al., 2013) 44.4 82.9
RNTN (Socher et al., 2013) 45.7 854
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DRNN (Irsoy and Cardie, 2014) 49.8 86.6
LST™M 46.4 (1.1) 84.9 (0.6)
Bidirectional LSTM 49.1 (1.0) 87.5 (0.5)
2-layer LSTM 46.0 (1.3) 86.3 (0.6)
2-layer Bidirectional LSTM 48.5 (1.0) 87.2 (1.0)
Dependency Tree-LSTM 484 (04) 857 (0.4)
Constituency Tree-LSTM

— randomly initialized vectors 43.9 (0.6) 82.0 (0.5)

— Glove vectors, fixed 49.7 (0.4) 571.5 (0.8)

— Glove vectors, tuned 51.0 (0.5) 88.0 (0.3)

Table: Results on the Stanford Sentiment Treebank
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Neural Machine Translation

Decoder do T d; T dx T da



Sequence2Sequence (Encoder-Decoder)

input
sentence = (1 encoder
O
fixed size
representation
<
output
sentgnce « decoder

(Neco&Forcada, 1997)
(Kalchbrenner et al., 2013)
(

(

Cho et al., 2014)

Sutskever et al., 2014)

RNN Encoder-Decoder (Cho et al. 2014).
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Results on Machine Translation

Both encoder and decoder are RNNs

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table: Results from English to French




RNN Encoder-Decoder Issues

e has

e fixed size representation can be the bottleneck

to remember the whole sentence

e humans do it differently
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Attention-based Encoder-Decoder

Tell Decoder what is now translated:

The agreement on @onomic A@sig@gust 1 QQD

L'accord sur ??7?

L'accord sur 'Espace économique européen a éete signé en ??7?

Have such hints computed by the net itself!



New Encoder

Bidirectional RNN: hj contains X; together with its context (..., X 1r Xiaq: L)

(h,, ..., h ) is the new variable-length representation instead of fixed-length c.




New Decoder

Step i: A

compute alignment o 1Sia

compute context

generate new output

compute new decoder state




Alignment Model

eij = v tanh(Ws;_y + Vh;) (1)
exp(e;;) (2)

e nonlinearity (tanh) is crucial!

e simplest model possible

o Vh; is precomputed =>
quadratic complexity with low
constant

T.
Calculate context: ¢; = Zaijhj.
j=1



Output model

p(y2|y17 <. ayi—lax) — g(yi—17 Siy C')a

si = f(Si—1, Yi—1,ci)-

Previous output Cudrrent context

Previous hidden state

Architecture: Fully connected + Maxout



Update hidden state

Sz 1y Yi— 1762

el

Current context

Previous hidden state

Previous output

Architecture: GRU



Quantitative Results

no performance drop on long sentences
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Model All No UNK”
RNNencdec-30 | 13.93 24.19
RNNsearch-30 | 21.50 31.44
RNNencdec-50 ‘f 17.82 M 26.71
RNNsearch-50 N26.75 ) 34.16
RNNsearch-50* | 28.45 36.15 '\
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without unknown words
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Attention is all you need (Vaswani et al. 2017)

* Most existing models for neural machine translation

e RNN or CNN for encoder and decoder
e Attention is used to connect encoder and decoder

* The Transformer (Vaswani et al. 2017)
* Only attention is used
* Parallelizable
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Feed
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4 | ~\ | Add & Norm z
aolol ot Multi-Head
Feed Attention
Forward T 77 N x
L 3
Nx Add & Norm
¢—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
A J) At 2
O J ——,
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
t t



Encoder

* A stack of N=6 identical layers

* Each layer are composed of two sublayers
* Multi-head self-head attention
e Position-wise fully connected feed-forward
network

* Residual connection followed by
normalization are used in both sublayers

* LayerNorm(x + Sublayer(x))

Output
Probabilities

[ Softmax )

>ositional

-ncoding

Inputs

Outputs
(shifted right)

( Linear )
1 )
[ Add & Norm J=—~
Feed
Forward
1 ~N [ Add & Norm J==—
—{ Add & Norm ) Multi-Head
Feed Attention
Forward 7 ) g N x
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~—| Add & Norm ) Maskod
Multi-Head Multi-Head
Attention Attention
A_ 2 At
. —J
J J
- Positione
®_<> C>—® Encoding
Input Output
Embedding Embedding



Multi-head Attention

* Attention
* Mapping a query and a set of key-value pairs to an output
* Query, Keys, and Values are all vectors

* The output is a weighted sum of the values, with the weights calculated
according to a softmax function depending on the similarities between
qgueries and keys



Multi-head Attention

e Scaled Dot-Product Attention Scaled Dot-Product Attention
* Avoiding pushing the softmax function into regions A
where it has extremely small gradients. MatMul |
* 'y
SoftMax
: N T ot : foT i Mask (opt)
Attention((Q), K,V ) = softmax( )V
| v d . Scale
’\ MatMul
t1
Q K Vv

d_k: dimension of keys and queries




Multi-head Attention

 Multi-head Attention

* Linearly project the queries, keys, and values h times
with different, learned linear projects respectively

« Concatenate the outputs and project again

MultiHead(Q. K. V) = Concat(head;. ..., head;, )W ©
where head; = ;Xth_‘nti(m(QU}Q. KH;K. VU}V )

. . . - e e
Where the projections are parameter matrices W € Rmoerxdic 'K ¢ Remoseaxdic ||V g Relmoser x o
and WO g RNdv > dmotel,

Multi-Head Attention

t

Linear

Concat

5

Scaled Dot-Product

Attention
t t t
Linear Linear d Linear J
¥ ¥ T
V K Q




Position-wise Feed-Forward Network

* Applied to each position separately and identically
* Two linear transformations with RELU as the activation in between
» Different parameters are used across different layers

FEN(x) = max(0. W + by)Wo + by



Positional Encoding

* Without recurrence and convolution, the order information is lost

* Need to encode the relative or absolute position of the tokens in the
seguence

* Position encodings are added to both the embeddings of the tokens
in both encoder and decoder

* Sine and cosine functions of different frequencies are used:
’Ukr{pu.w.ﬂé} — .'-'f-.”{_j}{).w;f" 1000 )zf'r’admmklj
PL}IJ‘”""'Q?—#IJ — ('{-)H{,"*’”-“;’E1[:]'['){){)2‘;fdmmk~l ]

* Pos is the position and i is the dimension



Decoder

Output
Probabilities
* N=6 identical layers ( :max )
( Linear )
o EaCh |ayer [Add&fNorm J—
e Masked multi-head attention Forvard
. 0 . t_d
e Position-wise fully connected feed-forward (o) ) ||| Pt
network Forwaro B
] . — 1 ——-
* Multi-head attention over the output of the N~ | (AT o) ey
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At 2 A1
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Discussion: advantages of Self-Attention

* Complexity

e Short-range v.s. long-range dependency

* Interpretability

Layer Type Complexity per Layer  Sequential ~ Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)




Results

Table 2: The Transtormer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Mod BLEU Training Cost (FLOPs)
odel EN-DE  EN-FR EN-DE  EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-10%  1.4.10%°
ConvS2S [9] 25.16  40.46 9.6-10%  1.5-1020
MoE [32] 26.03  40.56 2.0-10%  1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%0  1.1-10%
ConvS2S Ensemble [9] 26.36  41.29 7.7-1019  1.2.10%
Transformer (base model) 27.3 38.1 3.3-.10'8

Transformer (big) 28.4 41.8 23.1019
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e Attention is all you need

Question Answering

* Memory Network
* QANet



bAbi Dataset by Facebook

20 tasks for text understanding and reasoning
* Context sentences

* Question
* Answer
Sam walks into the kitchen. Brian is a lion. Mary Jjourneyed to the den.
Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.
Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.
Sam drops the apple. Bernhard is green. Mary discarded the milk.
Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway




End-to-End Memory Network (Architecture)
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).



Input Memory Representations

e Suppose we are given an input set x1, x2, ..., xi to be stored in
memory

* Convert each x; to a d-dimensional vector m; (e.g., with an
embedding matrix A € R2*")

* The query q is also embedded (e.g., with another embedding matrix
B) as the internal state u.

 Calculate the attention according to

T

p; = Softmax(u" m;).



Output memory representations

* Each x_i has a corresponding output vector c_i (with another
embedding matrix C).

* The response vector from the memory o:

0 = Zpici.



Generating the final prediction

* The sum of the output vector o and the input embedding u is then
passed through a final weight matrix W (of size V x d) and a softmax
to produce the predicted label:

a = Softmax(W (o + u))



End-to-End Memory Network (Embedding)

e Bag of Words (BoW)
© om; = Zj Axi;
e Position Encoding (PE)
o My =) lj Az
e Temporal Encoding (TE)
o my = Y i Axi; + Ta(i)
e Random Noise (RN)

o Forregularizing T4



Multiple Layers:

* The input to layers above the first is the sum of output o* and the
input u”® from layer k:

utt = uF 4 oF.

* Each layer has its own embedding matrices A, C¥



Enc
Mu

-to-End Memory Network (Multiple
tiple Layers)
} é }Ha Types of Weight-Tying:
g T, Answer Adjacent:
o Akt — Ok
o WT = K
e B=A

Layer-wise (RNN-Like):
e Al=4%2=_=4AK
on} o NN=(¢=_..=0"%




bAbi Results

Baseline MemN2N
Strongly PE I hop 2hops | 3 hops PE PELS
Supervised LSTM | MemNN PE LS PELS | PELS | PELS | LSRN LW
Task MemNN [22] 22 WSH BoW PE LS RN joint joint joint joint joint
I: 1 supporting fact 0.0 50.0 0.1 0.6 0.1 0.2 0.0 0.8 0.0 0.1 0.0 0.1
2: 2 supporting facts 0.0 80.0 428 176 | 21.6 | 128 8.3 62.0 15.6 14.0 11.4 18.8
3: 3 supporting facts 0.0 80.0 76.4 71.0 | 642 | 588 | 403 76.9 31.6 33.1 219 31.7
4: 2 argument relations 0.0 39.0 40.3 320 38 11.6 2.8 228 22 5.7 134 17.5
5: 3 argument relations 2.0 30.0 16.3 18.3 14.1 15.7 | 13.1 11.0 13.4 148 144 12.9
6: yes/no questions 0.0 52.0 51.0 8.7 79 8.7 7.6 7.2 23 33 28 20
7: counting 15.0 51.0 36.1 235 216 | 203 | 173 159 254 17.9 18.3 10.1
8: lists/sets 9.0 55.0 37.8 11.4 126 | 12.7 | 10.0 13.2 11.7 10.1 9.3 6.1
9: simple negation 0.0 36.0 359 21.1 233 | 170 | 132 5.1 2.0 3.1 1.9 1.5
10: indefinite knowledge 2.0 56.0 68.7 228 174 | 186 | 15.1 10.6 5.0 6.6 6.5 2.6
11: basic coreference 0.0 38.0 30.0 4.1 43 0.0 0.9 84 1.2 0.9 0.3 33
12: conjunction 0.0 26.0 10.1 0.3 0.3 0.1 0.2 04 0.0 0.3 0.1 0.0
13: compound coreference 0.0 6.0 19.7 10.5 9.9 0.3 04 6.3 0.2 14 0.2 0.5
14: time reasoning 1.0 73.0 18.3 1.3 1.8 2.0 1.7 36.9 8.1 8.2 6.9 2.0
15: basic deduction 0.0 79.0 64.8 243 0.0 0.0 0.0 46.4 0.5 0.0 0.0 1.8
16: basic induction 0.0 77.0 50.5 520 | 521 1.6 1.3 474 513 35 2.7 51.0
17: positional reasoning 35.0 49.0 509 454 | 50.1 | 490 | 510 444 412 445 404 426
18: size reasoning 5.0 48.0 513 48.1 136 | 10.1 1.1 9.6 10.3 9.2 94 9.2
19: path finding 64.0 92.0 100.0 89.7 874 | 856 | 828 90.7 89.9 90.2 88.0 90.6
20: agent’s motivation 0.0 9.0 3.6 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2
Mean error (%) 6.7 513 40.2 25.1 203 | 163 | 139 258 15.6 133 12.4 15.2
Failed tasks (err. > 5%) R 20 18 15 13 12 11 17 11 11 11 10




bAbi Results

Story (1: 1 supporting fact) Support| Hop1 | Hop2 | Hop 3 Story (2: 2 supporting facts) Support| Hop1 | Hop2 | Hop3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes

John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00

John travelled to the bathroom. yes 0.60 John moved to the hallway. yes 0.00 0.00

Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00

Where is John? Answer: bathroom Prediction: bathroom

Where is the milk? Answer: hallway Prediction: hallway

Story (16: basic induction) Support| Hop 1
Brian is a frog. yes 0.00
Lily is gray. 0.07
Brian is yellow. yes 0.07

Julius is green.

Greq is a frog. yes

0.06

Story (18: size reasoning) Support| Hop 1
The suitcase is bigger than the chest. yes 0.00
The box is bigger than the chocolate. 0.04
The chest is bigger than the chocolate. yes 0.17
The chest fits inside the container. 0.00
0.00 The chest fits inside the box. 0.00

Ho

What color is Greg? Answer: yellow Prediction: yellow

Does the suitcase fit in the chocolate? Answer: no Prediction: no




Language Model

* Adaptation to LM
* Inputs are words, not sentences
* Question g is assumed to have constant embeddings (0.1)
e Output softmax is applied to the whole dictionary

* Layer-wise weight sharing



Results

Penn Treebank

Text8

150

200 118 111

# of #of memory Valid. Test # of #of memory Valid. Test
Model hidden  hops size perp. perp. | hidden hops size perp.  perp.
RNN 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187 |
150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
7 -




SQUAD (Rajpurkar et al. 2016)

* 500 Wikipedia articles, 20k paragraphs

* The questions and answers are collected by crowdsourcing

* Given a paragraph, the workers are required to return 5 questions and
answers

e Each answer is a span in the given paragraph
* 100k questions in total, covering a wide range of topics

Passage: Tesla later approached Morgan to ask for more funds to build a more powerful transmitter.
When asked where all the money had gone, Tesla responded by saying that he was affected by
the Panic of 1901, which he (Morgan) had caused. Morgan was shocked by the reminder of his part
in the stock market crash and by Tesla’s breach of contract by asking for more funds. Tesla wrote
another plea to Morgan, but it was also fruitless. Morgan still owed Tesla money on the original
agreement, and Tesla had been facing foreclosure even before construction of the tower began.

Question: On what did Tesla blame for the loss of the initial money?
Answer: Panic of 1901




Different Types of Questions and Answers

Answer type Percentage  Example

Date 8.9% 19 October 1512
Other Numeric 10.9% 12

Person 12.9%  Thomas Coke
Location 4.4%  Germany

Other Entity 15.3%  ABC Sports
Common Noun Phrase 31.8%  property damage
Adjective Phrase 3.9%  second-largest

Verb Phrase 5.5%  returned to Earth
Clause 3.7%  to avoid trivialization

Other 2.7%  quietly




Reasoning Description Example Percentage
Lexical variation Major correspondences between  Q: What is the Rankine cycle sometimes called? 33.3%
(synonymy) the question and the answer sen- Sentence: The Rankine cycle is sometimes re-

tence are synonyms. ferred to as a practical Carnot cycle.
Lexical variation Major correspondences between Q: Which governing bodies have veto power? 9.1%

(world knowledge)

the question and the answer sen-
tence require world knowledge to
resolve.

Sen.: The European Parliament and the Council of

the European Union have powers of amendment
and veto during the legislative process.

Syntactic variation  After the question is paraphrased Q: What Shakespeare scholar is currently on the 64.1%
into declarative form, its syntac- faculty?
tic dependency structure does not Sen.. Current faculty include the anthropol-
match that of the answer sentence ogist Marshall Sahlins, ..., Shakespeare scholar
even after local modifications. David Bevington.
Multiple sentence ~ There is anaphora, or higher-level — Q: What collection does the V&A Theatre & Per- 13.6%
reasoning fusion of multiple sentences is re- formance galleries hold?
quired. Sen.: The V&A Theatre & Performance gal-
leries opened in March 2009. They
hold the UK’s biggest national collection of
material about live performance.
Ambiguous We don’t agree with the crowd- Q: What is the main goal of criminal punishment? 6.1%

workers’ answer, or the question
does not have a unique answer.

Sen.: Achieving crime control via incapacitation
and deterrence is a major goal of criminal punish-
ment.




Baselines

e candidate answer + sentence lexical feature

Exact Match Fl
Dev Test Dev Test
Random Guess 1.1% 1.3% 4.1% 4.3%
Sliding Window 13.2% 12.5% 20.2%  19.7%
Sliding Win. + Dist. 13.3%  13.0% 20.2%  20.0%
Logistic Regression 40.0% 404%  51.0% 51.0%
Human 80.3% 77.0% 90.5% 86.8%



The current Leaderboard (2018.06.07)

Rank

1
Mar 19, 2018

2
May 10, 2018

3
Mar 06, 2018

4
May 09, 2018

4
Jan 22, 2018

4
Feb 19, 2018

Model

Human Performance
Stanford University
(Rajpurkar et al. '16)

QANet (ensemble)
Google Brain & CMU

MARS (ensemble)
YUANFUDAO research NLP

QANet (ensemble)
Google Brain & CMU

MARS (single model)
YUANFUDAO research NLP

Hybrid AoA Reader (ensemble)
Joint Laboratory of HIT and iFLYTEK Research

Reinforced Mnemonic Reader + A2D (ensemble
model)
Microsoft Research Asia & NUDT

EM

82.304

83.877

83.520

82.744

82.587

82.482

82.849

F1

91.221

89.737

89.612

89.045

88.880

89.281

88.764




QANet (Yu et al. 2018)

* Most existing models for question answering
* RNN are used for encoding the paragraphs and queries
 Slow for both training and inference

e A new encoder
 Convolution: model local interaction
 Self-attention: model global interaction
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Figure 1: An overview of the QANet architecture (left) which has several Encoder Blocks. We
use the same Encoder Block (right) throughout the model, only varying the number of convolutional
layers for each block. We use layernorm and residual connection between every layer in the Encoder
Block. We also share weights of the context and question encoder, and of the three output encoders.
A positional encoding is added to the input at the beginning of each encoder layer consisting of sin
and ros functions at varying wavelengths, as defined in (Vaswani et al., 2017a). Each sub-layer after
the positional encoding (one of convolution, self-attention, or feed-forward-net) inside the encoder
structure is wrapped inside a residual block.



Input Embedding Layer

* Word embedding: concatenating word embedding and character
embedding

* Fixed word embedding during training and initialized with pre-trained Glove
vector

* All the out-of-vocabulary words are mapped to <UNK> with trainable
embedding

* CNN on character embeddings



Embedding Encoder Layer

 [convolution-layer x # + self-attention-layer +
feed-forward-layer]

e Similar to the Transformer
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Context-Query Attention Layer

Maodel

( Stan F:nhubllly ) (m
* Denote the encoded context and query as Cand Q ) (T—)
 Construct a similarity matrix S € R™" between o= ) o )
each pair of words in the context and query o) C )

* The similarity function: f(q.c) = Wylg,c.q @ €], '{QK ( EDT;:,’.;.““‘;) /

« W, is trainable N‘*x( ) /
: "G 5 f;f,f

* Normalize each row of S by applying the softmax
function, yielding the matrix S.

* Context-to-query attention A = SQT € R"™*d

Stacked Embedding
Encodar Blocks

* Query-to-context attention B = SS7CT € R™4 ) C — )
= f T

AN YaYs Yy
':_/ '\__j' W “‘)I 'n_.-' LN 'L_/

« S column normalized matrix of S by softmax function




Model Encoder Layer

* The input at each positionis [c,a,c ®© a,c O b], whereaand b are a
respectively a row of attention matrix A and B.

* Apply 3 layers of encoder block



Output Layer

* Predict the probability of each position in the context being the start
or end of an answer span. The probability of the starting and ending
position are modeled as:

p' = softmax(Wi[Mo; M1]), p° = softmax(Wa|My; M2)).

* Where W1 and W2 are two trainable variables, and MO, M1, M2 are
respectively the outputs of the three model encoders from bottom to

top.
* The final objective function:

N

&3 [ostr) + st )|



Inference

* The predicted span (s,e) is chosen such that plpZ2 is maximized and
s < e. Standard dynamic programming can be used with linear time
complexity



Data Augmentation with Machine Translation

e Obtain paraphrases with machine translation models
* One from English to French, and another from French to English

Autrefois, le thé avait été utilisé surtout pour les
moines bouddhistes pour rester éveillé pendant la méditation.

(ranslation sentence)
]

k translations *
English to French French to English
NMT NMT
T k*2 paraphrases
| L
Previously, tea had been used primarily for In the past, tea was used mostly for Buddhist
Buddhist monks to stay awake during meditation. monks to stay awake during the meditation.

(input sentence) (paraphrased sentence)



Results on SQUAD

Published’= LeaderBoard'

Single Model EM/FI EM/FI
LR Baseline (Rajpurkar et al., 2016) 40.4/51.0 40.4 7/ 51.0
Dynamic Chunk Reader (Yu et al., 2016) 62.5/71.0 62.5/71.0
Match-LSTM with Ans-Ptr (Wang & Jiang, 2016) 64.7/73.7 64.7/73.7
Multi-Perspective Matching (Wang et al., 2016) 65.5/75.1 70.4/78.8
Dynamic Coattention Networks (Xiong et al., 2016)  66.2/75.9 66.2/75.9
FastQA (Weissenborn et al., 2017) 68.4/717.1 68.4/7717.1
BiDAF (Seo et al., 2016) 68.0/77.3 68.0/77.3
SEDT (Liu et al., 2017a) 68.1/77.5 68.5/78.0
RaSoR (Lee et al., 2016) 70.8/78.7 69.6/77.7
FastQAExt (Weissenborn et al., 2017) 70.8/78.9 70.8/78.9
ReasoNet (Shen et al., 2017b) 69.1/78.9 70.6/79.4
Document Reader (Chen et al.. 2017) 70.0/79.0 70.7/79.4
Ruminating Reader (Gong & Bowman, 2017) 70.6/79.5 70.6/79.5
jNet (Zhang et al., 2017) 70.6/79.8 70.6/79.8
Conductor-net N/A 72.6/81.4
Interactive AoA Reader (Cui et al., 2017) N/A 73.6/81.9
Reg-RaSoR N/A 75.8/83.3
DCN+ N/A 749/ 82.8
AIR-FusionNet N/A 76.0/ 83.9
R-Net (Wang et al., 2017) 72.3/80.7 76.5 /84.3
BiDAF + Self Attention + ELMo N/A 77.9/ 85.3
Reinforced Mnemonic Reader (Hu et al.. 2017) 73.2/81.8 73.2/81.8
Dev set: QANet 73.6/82.7 N/A
Dev set: QANet + data augmentation x2 74.5/83.2 N/A
Dev set: QANet + data augmentation x3 75.1/83.8 N/A
Test set: QANet + data augmentation <3 76.2/ 84.6 76.2/ 84.6

Table 2: The performances of different models on SQuAD dataset.



summary

* Embedding

* Word, sentence, and document embedding

» Key techniques
* CNN
* RNN
* Attention
 Self-Attention



Thanks!



