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ABSTRACT

Online communities such as Facebook and Twitter are enormously

popular and have become an essential part of the daily life of many

of their users. Through these platforms, users can discover and

create information that others will then consume. In that context,

recommending relevant information to users becomes critical for

viability. However, doing recommendation in online communities

is a challenging problem: 1) users’ interests are dynamic, and 2)

users are influenced by their friends. Moreover, the influencers may

be context-dependent. That is, different friends may be relied upon

for different topics. Modeling both signals is therefore essential for

recommendations.

We propose a recommender system for online communities

based on a dynamic-graph-attention neural network. We model dy-

namic user behaviors with a recurrent neural network, and context-

dependent social influence with a graph-attention neural network,

which dynamically infers the influencers based on users’ current

interests. The whole model can be efficiently fit on large-scale data.

Experimental results on several real-world data sets demonstrate

the effectiveness of our proposed approach over several competitive

baselines including state-of-the-art models.

CCS CONCEPTS

• Information systems→ Social recommendation; • Computing

methodologies→ Ranking; Learning latent representations;

KEYWORDS

Dynamic interests; social network; graph convolutional networks;

session-based recommendation

ACM Reference Format:

Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang,

and Jian Tang. 2019. Session-based Social Recommendation via Dynamic

∗
M. Zhang and J. Tang are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5940-5/19/10. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

Graph Attention Networks. In The Twelfth ACM International Conference on
Web Search and Data Mining (WSDM ’19), February 11–15, 2019, Melbourne,
VIC, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

XXXXXX.XXXXXX

1 INTRODUCTION

Online social communities are an essential part of today’s online

experience. Platforms such as Facebook, Twitter, and Douban en-

able users to create and share information as well as consume the

information created by others. Recommender systems for these

platforms are therefore critical to surface information of interest to

users and to improve long-term user engagement. However, online

communities come with extra challenges for recommender systems.

First, user interests are dynamic by nature. A user may be in-

terested in sports items for a period of time and then search for

new music groups. Second, since online communities often pro-

mote sharing information among friends, users are also likely to be

influenced by their friends. For instance, a user looking for a movie

may be influenced by what her friends have liked. Further, the set

of influencers can be dynamic since they can be context-dependent.

For instance, a user will trust a set of friends who like comedies

when searching for funny films; while she could be influenced by

another set of friends when searching for action movies.

Motivating Example. Figure 1 presents the behavior of Alice and

her friends’ in their online community. Behaviors are described by

a sequence of actions (e.g., item clicks). To capture users’ dynamic

interests, their actions are segmented into sub-sequences or sessions.
We are therefore interested in session-based recommendations [27]:
within each session, we want to recommend the next item Alice

should consume based on the items she has consumed thus far in

the session. Figure 1 presents two sessions: session (a) and (b). In

addition, the items consumed by Alice’s friends are also available.

We would like to use them to provide even better recommendations.

We are thus in a session-based social recommendation setting.

In session (a), Alice browses sports items. Two of her friends:

Bob and Eva, are notorious sports fans (long-term interests). Fur-

ther, they are also browsing sports’ items (short-term interests).

Considering both facts, Alice may be influenced by the two and,

e.g., decide to learn more about Ping Pong next. In session (b), Alice

is interested in “literature & art” items. The situation is different

than in session (a) since none of her friends have consumed such

items recently but David is generally interested in this topic (long-

term interests). In this case, it would make sense for Alice to be
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Figure 1: An illustration of Alice’s social influences in two sessions. Alice’s interests might change across different sessions,

while shemay be influenced by her friends, by either their short-term preferences or long-term preferences at different times.

influenced by David, and say, be recommended a book that David

enjoyed. These examples show how a user’s current interests com-

bined with the (short- and long-term) interests of different friends

provide session-based social recommendations. In this paper, we

present a recommendation model based on both.

The current recommendation literature has modeled either users’

dynamic interests or their social influences but, as far as we know

has never combined both (like in the example above). A recent

study [13] models session-level user behaviors using recurrent

neural networks but social influences are not considered. Others

studied social influences [5, 23, 40]. For example, Ma et al. [23]

explores the social influence of friends’ long-term preferences on

recommendations. However, the influences from different users are

static, they do not change according to users’ current interests.

We propose an approach to model both users’ session-based

interests as well as dynamic social influences. That is, which subset

of a user’s friends influence her (the influencers) according to her

current session. Our recommendation model is based on dynamic-

graph-attention networks. Our approach first models user behav-

iors within a session using a recurrent neural network (RNN) [8].

According to users’ current interests—captured by the hidden repre-

sentation of the RNN—we capture the influences of friends using the

graph-attention network [32]. To provide session-level recommen-

dations, we distinguish the model of friends’ short-term preferences

from the long-term preferences one. The influence of each friend

given the user’s current interests is then determined automatically

using an attention mechanism [2, 39].

We conduct extensive experiments on data sets collected from

several online communities (Douban, Delicious, and Yelp). Our

proposed approach outperforms many competitive baselines by

modeling both users’ dynamic behaviors and dynamic social influ-

ences.

To summarize, we make the following contributions:

• Wepropose to study both dynamic user interests and context-

dependent social influences for the recommendation in on-

line communities.

• We propose a novel recommendation approach based on

dynamic-graph-attention networks for modeling both dy-

namic user interests and context-dependent social influences.

The approach can effectively scale to large datasets.

• We conduct extensive experiments on real-world data sets.

Experimental results demonstrate the effectiveness of our

model over strong and state-of-the-art baselines.

Organization. §2 discusses related works. In §3 we give a formal

definition of the session-based social recommendation problem.

Our session-based social recommendation approach is described in

§4. §5 presents the experimental results, followed by concluding

remarks in §6.

2 RELATEDWORK

We discuss three lines of research that are relevant to our work: 1)

recommender systems that model the dynamic user behaviors, 2)

social recommender systems that take social influence into consid-

eration, and 3) recent progress of convolutional network developed

for graph-structured data.

2.1 Dynamic Recommendation

Modeling user interests that change over time has already received

some attention [6, 19, 38]. For example, Xiong et al. [38] learned tem-

poral representations by factorizing the (user, item, time) tensor. Ko-

ren [19] developed a similar model named timeSVD++. Charlin et al.

[6] developed similar ideas using Poisson factorization [10]. How-

ever, these approaches assume that the interest of users changes

slowly and smoothly over long-term horizons (typically on the

order of months or years). Afterwards, Wu et al. [36] used two sep-

arate RNNs to capture the dynamics of both users and items based

on temporal observations. Beutel et al. [3] also built an RNN-based

recommender while considering auxiliary context information. Dif-

ferent from these works, we are interested in capturing session-level
preferences typical of online communities. Recent works use RNN

to model user sessions, which consist of sequences of items con-

sumed by a user within a given length of time (e.g., one hour or one

week) [13, 20]. These models assume that items exhibit coherence

within a session. We use a similar approach to model session-based

user interests.

2.2 Social Recommendation

Modeling the influence of friends on user interests has also received

attention [15, 16, 22–24]. Most proposed models are (also) based

on Gaussian or Poisson matrix factorization. For example, Ma et al.

[23] studied social recommendations by regularizing latent user



factors such that the factors of connected users are close by. Chaney

et al. [5] weighted the contribution of friends on a user’s recommen-

dation using a learned “trust factor”. Zhao et al. [40] proposed an

approach to leverage social networks for active learning. Xiao et al.

[37] framed the problem as one of transfer learning between the

social domain and the recommendation domain. These approaches

can model social influences but assume that the influences are uni-

form across friends and independent from user’s preferences. Tang

et al. [30] and Tang et al. [29] proposed to model multi-facet trust

relations, which relies on additional side information (e.g., item

category) to define facets. Wang et al. [34] and Wang et al. [33]

distinguished strong and weak ties among users for the social rec-

ommendation. However, they ignore user’s short-term behaviors

and integrate context-independent social influences. Our proposed

approach models dynamic social influences by modeling the dy-

namic user interests, and context-dependent social influences.

2.3 Graph Convolutional Networks

Convolutional neural networks (CNNs) have achieved great suc-

cess in computer vision and several other applications. CNNs are

mainly developed for data with 2-D grid structures such as images.

Recent work focuses on modeling more general graph-structure

data using CNNs [4, 7, 11, 12, 18]. Specifically, Kipf and Welling

[18] proposed graph-convolutional networks for semi-supervised

graph classification. The goal is to learn node representations by

leveraging both the node attributes and the graph structure. The

model is composed of multiple graph-convolutional layers, each of

which updates node representations using a combination of the cur-

rent node’s representation and the representations of its neighbors.

Through this process, the dependency between nodes is captured.

However, in the original formulation, all neighbors are given the

same “weight” when updating the node representations. Velickovic

et al. [32] addressed this problem by proposing graph-attention net-
works. They weight the contribution of neighbors differently using

an attention mechanism [2, 39].

We propose a dynamic-graph-attention network. Compared to

previous work, we focus on a different application (modeling the

context-dependent social influences for recommendations). Besides,

we model a dynamic graph, where the features of nodes evolve

over time, and the attention between nodes also changes over time

based on the current context.

3 PROBLEM DEFINITION

Recommender systems suggest relevant items to their users ac-

cording to their historical behaviors. In classical recommendation

models (e.g., matrix factorization [25]), the order in (or time at)

which a user consumes items is ignored. However, in online com-

munities, user preferences change very quickly, and the order of

user preference behaviors must be considered in order to model

users’ dynamic interests. In practice, since users’ entire history

record can be extremely long (e.g., certain online communities have

existed for years) and users’ interests change quickly, a common

approach is to segment user preference behaviors into different

sessions (e.g., using timestamps and consider each user’s behavior

within a week as a session) and provide recommendations at the

session level [13]. We define this problem as follows:

DEFINITION 1. (Session-based Recommendation) Let U de-

note the set of users and I be the set of items. Each user u is associ-

ated with a set of sessions by the time stepT , IuT = { ®Su
1
, ®Su

2
, . . . , ®SuT },

where ®Sut is the tth session of user u. Within each session, ®Sut is

consisted of a sequence of user behaviors {iut,1, i
u
t,2, . . . , i

u
t,Nu,t

},
where iut,p is the pth item consumed by user u in tth session, and

Nu,t is the number of items in the session. For each user u, given a

new session ®SuT+1 = {iuT+1,1, . . . , i
u
T+1,n }, the goal of session-based

recommendation is to recommend a set of items from I that the user
is likely to be interested in during the next step n + 1, i.e., iuT+1,n+1.

In online communities, users’ interests are not only correlated

to their historical behaviors but are also commonly influenced by

their friends. For example, if a friend watches a movie, I may also

be interested in watching it. This is known as social influence [31].

Moreover, the influences from friends are context-dependent. In
other words, the influences from friends vary from one situation to

another. For example, if a user wants to buy a laptop, she will be

more likely to turn to friends who are keen on high-tech devices;

while she may be influenced by photographer friends when shop-

ping for a camera. According to Figure 1, a user can be influenced

by both her friends’ short- and long-term preferences.

To provide an effective recommendation to users in online com-

munities, in this paper, we propose to model both users’ dynamic

interests and context-dependent social influences. We define the

resulting problem as follows:

DEFINITION 2. (Session-based Social Recommendation) Let

U denote the set of users, I be the set of items, and G = (U ,E) be
the social network, where E is the set of social links between users.

Given a new session ®SuT+1 = {iuT+1,1, . . . , i
u
T+1,n } from user u, the

goal of session-based social recommendation is to recommend a set

of items from I that u is likely to be interested in during the next

time step n + 1 by utilizing information from both her dynamic

interests (i.e., information from ∪T+1t=1
®Sut ) and the social influences

(i.e., information from ∪N (u)
k=1 ∪Tt=1 ®Skt , where N (u) is the set of

friends of user u).

4 DYNAMIC SOCIAL RECOMMENDER

SYSTEMS

As discussed in previous sections, users are not only guided by

their current preferences but also by their friends’ preferences. We

propose a novel dynamic graph attention model Dynamic Graph

Recommendation (DGRec) which models both types of preferences.

DGRec is composed of four modules (Figure 2). First (§4.1), a

recurrent neural network (RNN) [8] models the sequence of items

consumed in the (target) user’s current session. Her friends’ inter-

ests are modeled using a combination of their short- and long-term

preferences (§4.2). The short-term preferences, for example, items in

their most recent session, are also encoded using an RNN. Friends’

long-term preferences are encoded with a learned individual embed-

ding. The model then combines the representation of the current

user with the representations of her friends using a graph-attention

network (§4.3). This is a key part of our model and contribution: our

proposed mechanism learns to weigh the influence of each friend

based on the user’s current interests. As a final step (§4.4), the
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Figure 2: A schematic view of our proposed model for dynamic social recommendation.

model produces recommendations by combining a user’s current

preferences with her (context-dependent) social influences.

4.1 Dynamic Individual Interests

To capture a user’s rapidly changing interests, we use an RNN

to model the actions (e.g., clicks) of the (target) user in the cur-

rent session. RNN is standard for sequence modeling and has re-

cently been used for modeling user (sequential) preference data [13].

The RNN infers the representation of a user’s session ®SuT+1 =
{iuT+1,1, . . . , i

u
T+1,n }, token by token by recursively combining the

representation of all previous tokens with the latest token, i.e.,

hn = f (iuT+1,n ,hn−1), (1)

where hn represents a user’s interests and f (·, ·) is a non-linear

function which combines both sources of information. In practice,

the long short-term memory (LSTM) [14] unit is often used as the

combination function f (·, ·):

xn = σ (Wx [hn−1, iuT+1,n ] + bx )
fn = σ (Wf [hn−1, iuT+1,n ] + bf )
on = σ (Wo [hn−1, iuT+1,n ] + bo )
c̃n = tanh(Wc [hn−1, iuT+1,n ] + bc )
cn = fn ⊙ cn−1 + xn ⊙ c̃n

hn = on ⊙ tanh(cn ),

(2)

where σ is the sigmoid function: σ (x) = (1 + exp(−x))−1.

4.2 Representing Friends’ Interests

We posit that in online communities users are likely most influ-

enced by the recent interests of their friends. For that reason, we

model friends’ short- and long-term interests differently. Short-term

interests are modeled using the sequence of items most recently

consumed (e.g., a friend’s latest online session). Long-term inter-

ests represent a friend’s average interest and are modeled using an

individual embedding.

Short-term preference: For a target user’s current session

®SuT+1, her friends’ short-term interests are represented using their

sessions right before session T + 1 (our model generalizes beyond

single session but this is effective empirically). Each friend k’s ac-

tions ®SkT = {ikT ,1, i
k
T ,2, . . . , i

k
T ,Nk,T

} are modeled using an RNN. In

fact, here we reuse the RNN for modeling the target user’s session

(§ 4.1). In other words, both RNNs share the same weights. We

represent friend k’s short-term preference ssk by the final output of

the RNN:

ssk = rNk,T = f (ikT ,Nk,T
, rNk,T−1 ). (3)

Long-term preference: Friends’ long-term preferences reflect

their average interests. Since long-term preferences are not time-

sensitive, we use a single vector to represent them. Formally,

slk =Wu [k, :], (4)

where friend k’s long-term preference slk is the kth row of the user

embedding matrix Wu .

Finally, we concatenate friends’ short- and long-term preferences

using a non-linear transformation:

sk = ReLU (W1[ssk ; s
l
k ]), (5)

where ReLU (x) =max(0,x) is a non-linear activation function and

W1 is the transformation matrix.

4.3 Context-dependent Social Influences

We described how we obtain representations of target user (§ 4.1)

and her friends (§ 4.2). We now combine both into a single rep-

resentation that we then use downstream (§4.4). The combined

representation is a mixture of the target user’s interest and her

friends’ interest.
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Figure 3: The graphical model of the single convolutional

layer using attention mechanism, where the output con-

ditioned on current interest is interpreted as context-

dependent social influences.

We obtain this combined representation using a novel graph-

attention network. First, we encode the friendship network in a

graph where nodes correspond to users (i.e., target users and their

friends) and edges denote friendship. In addition, each node uses

its corresponding user’s representation (§4.1 & §4.2) as (dynamic)

features. Second, these features are propagated along the edges

using a message-passing algorithm [9]. The main novelty of our

approach lies in using an attentionmechanism to weigh the features

traveling along each edge. A weight corresponds to the level of a

friend’s influence. After a fixed number of iterations of message

passing, the resulting features at the target user’s node are the

combined representation.

Below we detail how we design the node features as well as the

accompanying graph-attention mechanism.

4.3.1 Dynamic feature graph. For each user, we build a graph

where nodes correspond to that user and her friends. For target

user u with |N (u)| friends, the graph has |N (u)| + 1 nodes. User

u’s initial representation hn is used as node u’s features h
(0)
u (the

features are updated each timeu consumes a new item in ®SuT+1). For
a friend k , the corresponding node feature is set to sk and remains

unchanged for the duration of time step T + 1. Formally, the node

features are h
(0)
u = hn and {h

(0)
k = sk ,k ∈ N (u)}.

4.3.2 Graph-Attention Network. With the node features defined

as above, we then pass messages (features) to combine friends’ and

the target user’s interests. This procedure is formalized as inference

in a graph convolutional network [18].

Kipf and Welling [18] introduce graph convolutional networks

for semi-supervised node representation learning. In these net-

works, the convolutional layers “pass” the information between

nodes. The number of layers L of the networks corresponds to the

number of iterations of message passing.
1
However, all neighbors

are treated equally. Instead, we propose a novel dynamic graph

attention network to model context-dependent social influences.

The fixed symmetric normalized Laplacian is widely used as a

propagation strategy in existing graph convolutional networks [7,

18]. In order to distinguish the influence of each friend, we must

break the static propagation schema first. We propose to use an at-

tention mechanism to guide the influence propagation. The process

1
We propagate information on a graph that also contains higher-order relationships

(e.g., friends of friends of friends) in practice. In the l th layer of the network, the target

user then receives information from users that are l edges away.

is illustrated in Figure 3. We first calculate the similarity between

the target user’s node representation h
(l )
u and all of its neighbors’

representations h
(l )
k :

α
(l )
uk =

exp(f (h(l )u ,h
(l )
k ))∑

j ∈N (u)∪{u } exp(f (h
(l )
u ,h

(l )
j ))
, (6)

where h
(l )
u is the representation of node/user u at layer l , and

f (h(l )u ,h
(l )
k ) = h(l )u

⊤
h
(l )
k is the similarity function between two ele-

ments. Intuitively, α
(l )
uk is the level of influence or weight of friend k

on user u (conditioned on the current context h
(l )
u ). Note that we

also include a self-connection edge to preserve a user’s revealed

interests. α
(l )
u : then provide the weights to combine the features:

˜h
(l )
u =

∑
k ∈N (u)∪{u }

α
(l )
ukh

(l )
k , (7)

where
˜h
(l )
u is a mixture of user u’s friends’ interests at layer l , fol-

lowed by a non-linear transformation: h
(l+1)
u = ReLU (W(l ) ˜h(l )u ).

W
(l )

is the shared and learnable weight matrix at layer l . We obtain

the final representation of each node by stacking this attention

layer L times.
2
The combined (social-influenced) representation is

denoted by h
(L)
u .

4.4 Recommendation

Since a user’s interest depends on both her recent behaviors and

social influences, her final representation is obtained by combining

both using a fully-connected layer:

ˆhn =W2[hn ;h(L)u ], (8)

where W2 is a linear transformation matrix, and
˜hn is the final

representation of the user u’s current interest.
We then obtain the probability that the next item will be y using

a softmax function:

p(y |iuT+1,1, . . . , i
u
T+1,n ; { ®S

k
T ,k ∈ N (u)}) =

exp( ˆh⊤n zy )∑ |I |
j=1 exp( ˆh

⊤
n zj )
, (9)

where N (u) are user u’s set of friends according to the social net-

work G, zy is the embedding of item y, and |I | is the total number

of items.

4.5 Training

We train the model by maximizing the log-likelihood of the ob-

served items in all user sessions:∑
u ∈U

T∑
t=2

Nu,t−1∑
n=1

logp(iut,n+1 |i
u
t,1, . . . , i

u
t,n ; { ®Skt−1,k ∈ N (u)}). (10)

This function is optimized using gradient descent.

2
We also tested our model with two popular context-independent propagation strate-

gies that do not use an attention mechanism: a) averaging friends’ interests and; b)

element-wise max-pooling over their interests—similar to techniques for aggregating

word-level embeddings [35]. Mean aggregation outperforms the latter, but both are

inferior to our proposed attention model.



5 EXPERIMENTS

We now study the effectiveness of our DGRec using real-world data

sets. We highlight the following results:

• DGRec significantly outperforms all seven methods it is

compared to under all experimental settings.

• Ablation studies demonstrate the usefulness of the different

components of DGRec.

• Exploring the fittedmodels shows that attention contextually

weighs the influences of friends.

5.1 Experimental Setup

5.1.1 Data Sets. We study all models using data collected from

three well-known online communities. Descriptive statistics for all

data sets are in Table 1.

Douban.3 A popular site on which users can review movies,

music, and books they consume. We crawled the data using the

identity of the users in the movie community to obtain every movie

they reviewed along with associated timestamps. We also crawled

the users’ social networks. We construct our dataset by using each

review as evidence that a user consumed an item. Users tend to be

highly active on Douban and we segment users’ behaviors (movie

consumption) into week-long sessions.

Delicious.4 An online bookmarking systemwhere users can store,

share, and discover web bookmarks and assign them a variety of

semantic tags. The task we consider is personalized tag recom-

mendations for bookmarks. Each session is a sequence of tags a

user has assigned to a bookmark (tagging actions are timestamped).

This differs from the usual definition of sessions as a sequence of

consumptions over a short horizon.

Yelp.5 An online review system where users review local busi-

nesses (e.g., restaurants and shops). Similar as for Douban, we treat

each review as an observation. Based on the empirical frequency

of the reviews, we segment the data into month-long sessions.

We also tried different segmentation strategies, and preliminary

results showed that our method consistently outperformed Session-

RNN and NARM for other session lengths. A systematic method

for optimizing session length is left for future work.

5.1.2 Train/valid/test splits. We reserve the sessions of the last

d days for testing and filter out items that did not appear in the

training set. Due to the different sparseness of the three data sets,

we choosed = 180, 50 and 25 forDouban, Yelp andDelicious datasets
respectively. We randomly and equally split the held out sessions

into a validation and a test set.

5.1.3 Competing Models. We compare DGRec to three classes

of recommenders: (A) classical methods that utilize neither social

nor temporal factors; (B) social recommenders, which take context-

independent social influences into consideration; and (C) session-

based recommendation methods, which model user interests in

sessions. (Below, we indicate a model’s class next to its name.)

• ItemKNN [21] (A): inspired by the classic KNN model, it looks

for items that are similar to items liked by a user in the past.

3
http://www.douban.com

4
Data set available from https://grouplens.org/datasets/hetrec-2011/

5
Data set available from https://www.yelp.com/dataset

Douban Delicious Yelp

# Users 32,314 1,650 141,804

# Items 14,109 4,282 17,625

# Events 3,493,821 296,705 1,200,503

# Social links 331,315 15,328 6,818,026

Start Date 01/12/2008 08/12/2009 01/01/2009

End Date 07/22/2016 07/01/2016 10/15/2010

Avg. friends/user 10.25 9.00 48.08

Avg. events/user 108.12 179.82 8.47

Avg. session length 4.38 4.30 3.63

Table 1: Descriptive statistics of our three data sets.

• BPR-MF [26] (A): matrix factorization (MF) technique trained

using a ranking objective as opposed to a regression objective.

• SoReg [23] (B): uses the social network to regularize the latent

user factors of matrix factorization.

• SBPR [40] (B): an approach for social recommendations based

on BPR-MF. The social network is used to provide additional

training samples for matrix factorization.

• TranSIV [37] (B): uses shared latent factors to transfer the

learned information from the social domain to the recommen-

dation domain.

• RNN-Session [13] (C): recent state-of-the-art approach that uses

recurrent neural networks for session-based recommendations.

• NARM [20] (C): a hybrid model of both session-level prefer-

ences and the user’s “main purpose”, where the main purpose

is obtained via attending on previous behaviors within the

session.

5.1.4 EvaluationMetrics. Weevaluate all models with twowidely

used ranking-based metrics: Recall@K and Normalized Discounted

Cumulative Gain (NDCG).

Recall@K measures the proportion of the top-K recommended

items that are in the evaluation set. We use K = 20.

NDCG is a standard ranking metric. In the context of next-

item recommendation, it is formulated as: NDCG = 1

log
2
(1+rankpos ) ,

where rankpos denotes the rank of a positive item. We report the

average value of NDCG over all the testing examples.

5.1.5 Hyper-parameter Settings. For RNN-Session, NARM and

our models, we use a batch size of 200. We use Adam [17] for

optimization due to its effectiveness with β1 = 0.9, β2 = 0.999 and

ϵ = 1e−8 as suggested in TensorFlow [1]. The initial learning rate

is empirically set to 0.002 and decayed at the rate of 0.98 every 400

steps. For all models, the dimensions of the user (when needed) and

item representations are fixed to 100 following Hidasi et al. [13]. We

cross-validated the number of hidden units of the LSTMs and the

performance plateaued around 100 hidden units. The neighborhood

sample sizes are empirically set to 10 and 15 in the first and second

convolutional layers, respectively. We tried to use more friends

in each layer but observed no significant improvement. For our

models, dropout [28] with rate 0.2 is used to avoid overfitting.

5.1.6 Implementation Details. We implement our model using

TensorFlow [1]. Training graph attention networks on our data with

https://grouplens.org/datasets/hetrec-2011/
https://www.yelp.com/dataset


Model Class Model

Douban Delicious Yelp

Recall@20 NDCG Recall@20 NDCG Recall@20 NDCG

Classical

ItemKNN [21] 0.1431 0.1635 0.2729 0.2241 0.0441 0.0989

BPR-MF [26] 0.0163 0.1110 0.2775 0.2293 0.0365 0.1190

Social

SoReg [23] 0.0177 0.1113 0.2703 0.2271 0.0398 0.1218

SBPR [40] 0.0171 0.1059 0.2948 0.2391 0.0417 0.1207

TranSIV [37] 0.0173 0.1102 0.2588 0.2158 0.0420 0.1187

Temporal

RNN-Session [13] 0.1643 0.1854 0.3445 0.2581 0.0756 0.1378

NARM [20] 0.1755 0.1872 0.3776 0.2768 0.0765 0.1380

Social + Temporal (Ours) DGRec 0.1861 0.1950 0.4066 0.2944 0.0842 0.1427

Table 2: Quantitative Results of Different Algorithms. We highlight that DGRec outperforms all other baselines across all

three data sets and both metrics. Further analysis is provided in §5.2.

mini-batch gradient descent is not trivial since node degrees have a

large range. We found the neighbor sampling technique proposed

in [11] to be effective. Further, to reduce the computational cost of

training DGRec, we represent friends’ short-term interests using

only their most recent sessions.

5.2 Quantitative Results

The performance of different algorithms is summarized in Table 2.

ItemKNN and BPR-MF (both standard methods) perform very simi-

larly, except on Douban. A particularity of Douban is that users typi-

cally only consume each item once (that’s different for Delicious and

Yelp). MF-based methods tend to recommend previously consumed

items which explain BPR-MF’s poor performance. By modeling

social influence, the performance of social recommenders improves

compared to BPR-MF in most cases. However, the improvement is

marginal because these three algorithms (B) only model context-

independent social influence. By modeling dynamic user interests,

RNN-Session significantly outperforms ItemKNN and BPR, which

is consistent with the results in Hidasi et al. [13]. Further, NARM

extends RNN-Session by explicitly modeling user’s main purpose

and becomes the strongest baseline. Our proposed model DGRec

achieves the best performance among all the algorithms by mod-

eling both user’s dynamic interests and context-dependent social

influences. Besides, the improvement over RNN-Session and NARM

is more significant compared to that of SoReg over BPR-MF, which

shows the necessity of modeling context-dependent social influ-

ences.

5.3 Variations of DGRec

To justify and gain further insights into the specifics of DGRec’s

architecture, we now study and compare variations of our model.

5.3.1 Self v.s. Social. DGRec obtains users’ final preferences as
a combination of user’s consumed items in the current session and

context-dependent social influences (see Eq. 8). To tease apart the

contribution of both sources of information, we compare DGRec

against two submodels: a) (DGRec
self

) a model of the user’s current

session only (Eq. 8 without social influence features h
(L)
u ) and; b)

Data Sets Models Recall@20 NDCG

Douban

DGRec
self

0.1643 0.1854

DGRec
social

0.1185 0.1591

DGRec 0.1861 0.1950

Delicious

DGRec
self

0.3445 0.2581

DGRec
social

0.3306 0.2516

DGRec 0.4066 0.2944

Yelp

DGRec
self

0.0756 0.1378

DGRec
social

0.0690 0.1356

DGRec 0.0842 0.1427

Table 3: Ablation study comparing the performance of the

complete model (DGRec) with two variations.

(DGRec
social

) a model using context-dependent social influence fea-

tures only (Eq. 8 without individual features hn ). Note that when us-
ing individual features only, DGRec

self
is identical to RNN-Session

(hence the results are reproduced from Table 2). Table 3 reports the

performance of all three models on our datasets. DGRec
self

con-

sistently outperforms DGRec
social

across all three data sets, which

means that overall users’ individual interests have a higher impact

on recommendation quality. Compared to the full model DGRec,

the performance of both DGRec
self

and DGRec
social

significantly

decreases. To achieve good recommendation performance in online

communities, it is, therefore, crucial to model both a user’s current

interests as well as her (dynamic) social influences.

5.3.2 Short-term v.s. Long-term. DGRec provides a mechanism

for encoding friends’ short- as well as long-term interests (see § 4.2).

We study the impact of each on the model’s performance. Similar

to above, we compare using either short- or long-term interests

to the results of using both. Figure 4 reports that for Douban, the
predictive capability of friends’ short-term interests outperforms

that of friends’ long-term interest drastically, and shows compa-

rable performance compared to the full model. This is reasonable

considering that the interests of users in online communities (e.g.,

Douban) change quickly, and exploiting users’ short-term interests

should be able to predict user behaviors more quickly. Interest-

ingly, on the data set Delicious, different results are observed. Using
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Figure 4: Performance w.r.t. friends’ short-term and friends’

long-term preferences on different datasets. The result of

Yelp data set is similar to Douban hence omitted.

Data Sets Conv. Layers Recall@20 NDCG

Douban

1 0.1726 0.1886

2 0.1861 0.1950

3 0.1793 0.1894

Delicious

1 0.4017 0.2883

2 0.4066 0.2944

3 0.4037 0.2932

Yelp

1 0.0760 0.1387

2 0.0842 0.1427

3 0.0846 0.1423

Table 4: Performance of our model w.r.t. different numbers

of convolution layers.

long-term interests yield more accurate predictions than short-term

interests. This is not surprising since, on Delicious website, users
tend to have static interests.

5.3.3 Number of Convolutional Layers. DGRec aggregates friends’
interests using a multi-layer graph convolutional network. More

convolutional layers will yield influences from higher-order friends.

In our study so far we have used two-layer graph convolutional

networks. To validate this choice we compare the performance to

one- and three-layer networks but maintain the number of selected

friends to 10 and 5 in the first and third layer, respectively. Table

4 shows a significant decline in performance when using a single

layer. This implies that the interests of friends’ friends (i.e. using 2

layers) is important for recommendations.

Next, we test our model using three convolutional layers to ex-

plore the influences of even higher-order friends. The influence

of the third layer on the performance is small. There is a small

improvement for Yelp but a slightly larger drop in performance for

both Douban and Delicious, which may be attributed to model over-

fitting or noises introduced by higher-order friends. This confirms

that two convolutional layers are enough for our data sets.

5.4 Exploring Attention

DGRec uses an attention mechanism to weigh the contribution of

different friends based on a user’s current session. We hypothesized

that while friends have varying interests, user session typically

only explores a subset of these interests. As a consequence, for a
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ferent sessions (left) and within a session (right). For both

plots, the y-axis represents friends of the target user. The

x-axis represents (1) eight sessions of the target user on the

left and (2) the item sequence within session #7 on the right.
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cretized into 20 intervals.

target user, different subsets of his friends should be relied upon

in different situations. We now explore the results of the attention

learned by our model.

First, we randomly select a Douban user from those who have

at least 5 test sessions as well as 5 friends and plot her attention

weights (Eq. 6) within and across session(s) in Figure 5. For the inter-

session level plot (left), we plot the average attention weight of a

friend within a session. For intra-session level plot (right), her at-

tention weights within one session (i.e. SessionId=7) are presented.

We make the following observations. First, the user allocates her at-

tention to different friends across different sessions. This indicates

that social influence is indeed conditioned on context (i.e., target

user’s current interests). Further, friend #8 obtains little attention

in all sessions, which means that social links do not necessarily cor-

respond to the shared interest. Second, the distribution of attention

is relatively stable within a single session. This confirms that the

user’s behaviors are coherent in a short period and suitable to be

processed in a session manner.

As a second exploration of the behavior of the attention mecha-

nism we take a macro approach and analyze the attention across

all users (as opposed to a single user across friends). We use the

attention levels inferred on the Douban test set. Figure 6 reports



the empirical distributions of the inter-session (brown) and intra-

session (blue) attention variance (i.e., how much does the attention

weights vary in each case). The intra-session variance is on average

lower. This agrees with our assumption that users’ interests tend

to be focused within a short time so that the same set of friends are

attended to for the duration of a session. On the contrary, a user

is more likely to trust different friends in different sessions, which

further validates modeling context-dependent social influences via

attention-based graph convolutional networks.

6 CONCLUSIONS

We propose a model based on graph convolutional networks for the

session-based social recommendation in online communities. Our

model first learns individual user representations bymodeling users’

current interests. Each user’s representation is then aggregated with

her friends’ representations using a graph convolutional networks

with a novel attention mechanism. The combined representation

along with the user’s original representation is then used to form

item recommendations. Experimental results on three real-world

data sets demonstrate the superiority of our model compared to

several state-of-the-art models. Next steps involve exploring user

and item features indicative of preferences and further improving

the performance of recommender systems for online communities.
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